3P17/4P17 COMPUTABILITY 2014-2015 Lecture Handout 1

Alphabets, strings, languages

An alphabet Σ is a finite set of symbols. E.g., $\Sigma = \{0, 1\}, \Sigma = \{a, b, \dots, z\}$.

A string σ over an alphabet Σ is a sequence of symbols from Σ . E.g., $\sigma = \text{gniksjfnd}$.

The **length** $|\sigma|$ of a string σ is the number of symbols that it is formed of.

<u>Concatenation</u> of strings $\sigma_1 = abc$, $\sigma_2 = xyz$ is $\sigma_1\sigma_2 = abcxyz$

A <u>substring</u> is a string within a string, appearing consecutively, e.g., bbb is a substring of abbbaa but not a substring of babbaa.

The **empty string** ε is for strings like the number zero in arithmetic: If σ is a string, $\varepsilon \sigma = \sigma \varepsilon = \sigma$ and $|\varepsilon| = 0$.

A language is a set of strings, can be finite or infinite.

Given an alphabet Σ , the **star operation** gives Σ^* , the set of all strings over Σ . E.g., if $\Sigma = \{a, b\}$, then $\Sigma^* = \{\varepsilon, a, b, aa, bb, \overline{ab}, ba, aaa, \ldots\}$.

Turing machines

- A Turing machine M is a 7-tuple: $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{acc}, q_{rej})$ where Q, Σ, Γ are finite sets and
- **1.** Q is the set of **states** (always includes $q_0, q_{\rm acc}, q_{\rm rej}$),
- **2.** Σ is the **input alphabet**; it <u>does not</u> include the **blank symbol** \sqcup , or **end-of-tape** symbol \triangleright
- **3.** Γ is the **tape alphabet**, where $\sqcup, \triangleright \in \Gamma$ and $\Sigma \subset \Gamma$,
- 4. $\delta: Q \setminus \{q_{acc}, q_{rej}\} \times \Gamma \to Q \times \Gamma \times \{L, R\}$ is the transition function,
- **5.** $q_0 \in Q$ is the start state,
- **6.** $q_{\text{acc}} \in Q$ is the **accept state**, and
- 7. $q_{rej} \in Q$ is the reject state.

A Turing machine has a read/write head and a tape, which is an infinite array of squares/locations, with a first location, a second location, ...

Each square/location holds exactly one symbol (which may be the blank symbol \sqcup).

The left end of the tape is occupied by \triangleright . It is never replaced by another symbol.

The Turing machine $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{acc}, q_{rej})$ performs computations as follows:

-Initially there is an input string $w = w_1 w_2, \ldots w_n \in \Sigma^*$ on the *n* leftmost squares after \triangleright .

-The rest of the tape is blank (i.e., filled with \sqcup).

- The read/write head starts at the first square after the \triangleright , i.e., on the first symbol of the input.

3P17/4P17 COMPUTABILITY 2014-2015

-At each step, M does the following: If the current state is $q_{\rm acc}$ or $q_{\rm rej}$, then halt. Otherwise, read the symbol under the head and do the following as per the transition function: replace the symbol on the square underneath the head, move the head, change state.

-If the read/write head is ever over \triangleright , it moves right in the next step. It cannot replace \triangleright (but can change state).

At any given step, the triple (current state, current head location, current tape contents) is called a **configuration**.

Configuration C_1 yields configuration C_2 if C_2 follows C_1 from the the rules of operation. We have starting configurations, accepting configurations, rejecting configurations...the latter two are halting configurations.

A Turing machine can:

- recognise/decide (strings in) languages
- compute functions on strings

Recognising/deciding languages

The collection of strings that cause a Turing machine M to reach an accepting state (accepting configuration) is called <u>the language of M, or the language recognised by M, and is denoted L(M).</u>

A language L_1 is called **Turing-recognisable** if some Turing machine recognises it, i.e., if there exists a Turing machine \overline{M} with $L(M) = L_1$.

Note, if $w \in L_1$, then M will always halt with accept. If $w \notin L_1$, then M may halt with reject, or may **loop** i.e., go on forever.

A Turing machine that halts (with accept or reject) on **every** input is called a <u>decider</u>.

A language L_1 is called <u>**Turing-decidable**</u>, or simply <u>decidable</u> if there is a decider M such that $L(M) = L_1$.

Computing functions on strings

A function $f: \Sigma^* \to \Sigma^*$ is called a function on Σ -strings

We say that a Turing machine M computes the function f if for every $w \in \Sigma^*$,

- M halts on input w
- after halting, the tape has f(w) on the leftmost squares of the tape and the rest are blank

A function f is called **Turing-computable**, or simply **computable** if there exists some Turing machine M that computes it.

This captures a broad class of computations, since the strings may be encoded to represent numbers, graphs, matrices,