3P17/4P17 COMPUTABILITY 2014-2015 Lecture Handout 1

Alphabets, strings, languages

An alphabet Σ is a finite set of symbols. E.g., $\Sigma=\{0,1\}, \Sigma=\{a, b, \ldots, z\}$.
A string σ over an alphabet Σ is a sequence of symbols from Σ. E.g., $\sigma=$ gniksjfnd.
The length $|\sigma|$ of a string σ is the number of symbols that it is formed of.
Concatenation of strings $\sigma_{1}=\mathrm{abc}, \sigma_{2}=\mathrm{xyz}$ is $\sigma_{1} \sigma_{2}=\mathrm{abcxyz}$
A substring is a string within a string, appearing consecutively, e.g., bbb is a substring of abbbaa but not a substring of babbaa.

The empty string ε is for strings like the number zero in arithmetic: If σ is a string, $\varepsilon \sigma=\sigma \varepsilon=\sigma$ and $|\varepsilon|=0$.

A language is a set of strings, can be finite or infinite.
Given an alphabet Σ, the star operation gives Σ^{*}, the set of all strings over Σ. E.g., if $\Sigma=\{\mathrm{a}, \mathrm{b}\}$, then $\Sigma^{*}=\{\varepsilon, a, b, a a, b b, a b, b a, a a a, \ldots\}$.

Turing machines

A Turing machine M is a 7 -tuple: $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\text {acc }}, q_{\mathrm{rej}}\right)$ where Q, Σ, Γ are finite sets and

1. Q is the set of states (always includes $q_{0}, q_{\mathrm{acc}}, q_{\mathrm{rej}}$),
2. Σ is the input alphabet; it does not include the blank symbol \sqcup, or end-of-tape symbol \triangleright
3. Γ is the tape alphabet, where $\sqcup, \triangleright \in \Gamma$ and $\Sigma \subset \Gamma$,
4. $\delta: Q \backslash\left\{q_{\mathrm{acc}}, q_{\mathrm{rej}}\right\} \times \Gamma \rightarrow Q \times \Gamma \times\{\mathrm{L}, \mathrm{R}\}$ is the transition function,
5. $q_{0} \in Q$ is the start state,
6. $q_{\text {acc }} \in Q$ is the accept state, and
7. $q_{\mathrm{rej}} \in Q$ is the reject state.

A Turing machine has a read/write head and a tape, which is an infinite array of squares/locations, with a first location, a second location, ...

Each square/location holds exactly one symbol (which may be the blank symbol \sqcup).
The left end of the tape is occupied by \triangleright. It is never replaced by another symbol.
The Turing machine $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\mathrm{acc}}, q_{\mathrm{rej}}\right)$ performs computations as follows:
-Initially there is an input string $w=w_{1} w_{2}, \ldots w_{n} \in \Sigma^{*}$ on the n leftmost squares after \triangleright.
-The rest of the tape is blank (i.e., filled with \sqcup).

- The read/write head starts at the first square after the \triangleright, i.e., on the first symbol of the input.
-At each step, M does the following: If the current state is $q_{\text {acc }}$ or $q_{\text {rej }}$, then halt. Otherwise, read the symbol under the head and do the following as per the transition function: replace the symbol on the square underneath the head, move the head, change state.
-If the read/write head is ever over \triangleright, it moves right in the next step. It cannot replace \triangleright (but can change state).

At any given step, the triple (current state, current head location, current tape contents) is called a configuration.

Configuration C_{1} yields configuration C_{2} if C_{2} follows C_{1} from the the rules of operation. We have starting configurations, accepting configurations, rejecting configurations...the latter two are halting configurations.

A Turing machine can:

- recognise/decide (strings in) languages
- compute functions on strings

Recognising/deciding languages

The collection of strings that cause a Turing machine M to reach an accepting state (accepting configuration) is called the language of M, or the language recognised by M, and is denoted $L(M)$.

A language L_{1} is called Turing-recognisable if some Turing machine recognises it, i.e., if there exists a Turing machine M with $L(M)=L_{1}$.

Note, if $w \in L_{1}$, then M will always halt with accept. If $w \notin L_{1}$, then M may halt with reject, or may loop i.e., go on forever.

A Turing machine that halts (with accept or reject) on every input is called a decider.
A language L_{1} is called Turing-decidable, or simply decidable if there is a decider M such that $L(M)=L_{1}$.

Computing functions on strings

A function $f: \Sigma^{*} \rightarrow \Sigma^{*}$ is called a function on Σ-strings
We say that a Turing machine M computes the function f if for every $w \in \Sigma^{*}$,

- M halts on input w
- after halting, the tape has $f(w)$ on the leftmost squares of the tape and the rest are blank

A function f is called Turing-computable, or simply computable if there exists some Turing machine M that computes it.

This captures a broad class of computations, since the strings may be encoded to represent numbers, graphs, matrices,

