3P17/4P17 COMPUTABILITY 2014-2015 Lecture Handout 3

A formalisation of tapes and computation

We have formally defined a Turing machine M as a 7 -tuple $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\text {acc }}, q_{\text {rej }}\right)$ but up until now, we have not formally defined what the tape is.

This is easy to do: Letting $\mathbb{N}_{0}=\{0,1,2, \ldots\}$, a "tape", along with symbols on it, is merely a function $T: \mathbb{N}_{0} \rightarrow \Gamma$, where we always set $T(0)=\triangleright$. Then for integer $i>0, T(i)$ can be thought of as the symbol "located i squares to the right" of \triangleright.

We can then define a configuration C as a 3 -tuple $C=(q, T, i)$ where $q \in Q$ is a state, T is a tape function, and integer $i \geq 0$ is a head location.
Then in the Turing machine $M, C=(q, T, i)$ yields $C^{\prime}=\left(q^{\prime}, T^{\prime}, i^{\prime}\right)$ if and only if $\delta(q, T(i))=\left(q^{\prime}, x, d\right)$ where

$$
T^{\prime}(j)=\left\{\begin{array}{ll}
x & \text { if } j=i \\
T(j) & \text { if } j \neq i
\end{array} \quad \text { and } \quad i^{\prime}= \begin{cases}i+1 & \text { if } d=R \\
i-1 & \text { if } d=L\end{cases}\right.
$$

Then computation with the Turing machine M on input $\sigma=\sigma_{1} \sigma_{2} \ldots \sigma_{n}$, defines a sequence of configurations $C_{0}, C_{1}, C_{2}, \ldots$, where the starting configuration is $C_{0}=\left(q_{0}, T_{0}, 1\right)$ where $T_{0}(0)=\triangleright$, $T_{0}(i)=\sigma_{i}$ for $1 \leq i \leq n$, and $T_{0}(i)=\sqcup$ for $i>n$. The sequence will be finite if M halts on σ, and will be (countably) infinite if M does not halt on σ.

For a multitape Turing machine with k tapes, we can extend the above by having k simultaneous tape functions.

Non-deterministic Turing machines

A non-deterministic Turing machine M is a 7 -tuple $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\mathrm{acc}}, q_{\mathrm{rej}}\right)$ with Q, Σ, Γ finite sets and $q_{0}, q_{\mathrm{acc}}, q_{\mathrm{rej}} \in Q$. These have the same meaning as in a single tape TM.

The transition function δ is different:

$$
\delta: Q \backslash\left\{q_{\mathrm{acc}}, q_{\mathrm{rej}}\right\} \times \Gamma \rightarrow \mathcal{P}(Q \times \Gamma \times\{L, R\})
$$

where, for a set $S, \mathcal{P}(S)$ is the power set of S, i.e., the collection of all subsets of S.
Whilst in a deterministic TM computation is a sequence of configuration C_{0}, C_{1}, \ldots, in a nondeterministic TM it is a sequence of sets of configurations $\mathcal{S}_{0}, \mathcal{S}_{1}, \ldots$
$\mathcal{S}_{0}=\left\{C_{0}\right\}$ where C_{0} is the starting configuration. Then \mathcal{S}_{i+1} is derived from \mathcal{S}_{i} in the following way: A configuration $C^{\prime}=\left(q^{\prime}, T^{\prime}, i^{\prime}\right)$ is in \mathcal{S}_{i+1} if and only if there is some configuration $C=(q, T, i) \in \mathcal{S}_{i}$ such that $\left(q^{\prime}, x, d\right) \in \delta(q, T(i))$ where

$$
T^{\prime}(j)=\left\{\begin{array}{ll}
x & \text { if } j=i \\
T(j) & \text { if } j \neq i
\end{array} \quad \text { and } \quad i^{\prime}= \begin{cases}i+1 & \text { if } d=R \\
i-1 & \text { if } d=L\end{cases}\right.
$$

In other words, C^{\prime} is in \mathcal{S}_{i+1} if and only if there is some (non-halting) configuration C in \mathcal{S}_{i} that yields C^{\prime} under the action of the transition function (which may also yield many other configurations from C beside C^{\prime}). If all configurations in \mathcal{S}_{i} are halting configurations, then there are no further sets.

This creates a computation tree.
A non-deterministic Turing machine M accepts a string σ if there is some branch in the computation tree that accepts σ, that is, there is some \mathcal{S}_{i} in the sequence with $C_{i} \in \mathcal{S}_{i}$ accepting.

A non-deterministic Turing machine M rejects a string σ if every branch in the computation tree results in a reject for σ, that is, there is some \mathcal{S}_{i} in the sequence with every $C_{i} \in \mathcal{S}_{i}$ rejecting.

Searching a tree: Depth-first and breadth-first searches

Given a rooted, labelled tree \mathcal{T}, starting at the root, we can explore \mathcal{T} in two ways. In a depth-first search (DFS), from the root, we go from child vertex to child vertex until we hit a leaf. Then we go up and back down to a sibling of the leaf. Once all siblings have been explored, go up twice then down and do the same for a sibling of the parent, and so on.

With a breadth-first search (BFS), we explore the tree one level at a time.
If \mathcal{T} is infinite, a DFS can take us down an infinite path, meaning there could be vertices in \mathcal{T} that we never explore. With a BFS, every vertex will be explored eventually.

A DFS can be implemented with a stack, and a BFS can be implemented with a queue.

