
3P17/4P17 COMPUTABILITY 2014-2015 Lecture Handout 3

A formalisation of tapes and computation

We have formally defined a Turing machine M as a 7-tuple M = (Q,Σ,Γ, δ, q0, qacc, qrej) but up
until now, we have not formally defined what the tape is.

This is easy to do: Letting N0 = {0, 1, 2, . . .}, a “tape”, along with symbols on it, is merely a
function T : N0 → Γ, where we always set T (0) = .. Then for integer i > 0, T (i) can be thought
of as the symbol “located i squares to the right” of ..

We can then define a configuration C as a 3-tuple C = (q, T, i) where q ∈ Q is a state, T is a tape
function, and integer i ≥ 0 is a head location.

Then in the Turing machineM , C = (q, T, i) yields C ′ = (q′, T ′, i′) if and only if δ(q, T (i)) = (q′, x, d)
where

T ′(j) =

{
x if j = i
T (j) if j 6= i

and i′ =

{
i+ 1 if d = R
i− 1 if d = L

.

Then computation with the Turing machine M on input σ = σ1σ2 . . . σn, defines a sequence of
configurations C0, C1, C2, . . ., where the starting configuration is C0 = (q0, T0, 1) where T0(0) = .,
T0(i) = σi for 1 ≤ i ≤ n, and T0(i) = t for i > n. The sequence will be finite if M halts on σ, and
will be (countably) infinite if M does not halt on σ.

For a multitape Turing machine with k tapes, we can extend the above by having k simultaneous
tape functions.

Non-deterministic Turing machines

A non-deterministic Turing machine M is a 7-tuple M = (Q,Σ,Γ, δ, q0, qacc, qrej) with Q,Σ,Γ
finite sets and q0, qacc, qrej ∈ Q. These have the same meaning as in a single tape TM.

The transition function δ is different:

δ : Q \ {qacc, qrej} × Γ→ P(Q× Γ× {L,R}),

where, for a set S, P(S) is the power set of S, i.e., the collection of all subsets of S.

Whilst in a deterministic TM computation is a sequence of configuration C0, C1, . . ., in a non-
deterministic TM it is a sequence of sets of configurations S0,S1,

S0 = {C0} where C0 is the starting configuration. Then Si+1 is derived from Si in the following way:
A configuration C ′ = (q′, T ′, i′) is in Si+1 if and only if there is some configuration C = (q, T, i) ∈ Si
such that (q′, x, d) ∈ δ(q, T (i)) where

T ′(j) =

{
x if j = i
T (j) if j 6= i

and i′ =

{
i+ 1 if d = R
i− 1 if d = L

.

1

3P17/4P17 COMPUTABILITY 2014-2015 Lecture Handout 3

In other words, C ′ is in Si+1 if and only if there is some (non-halting) configuration C in Si that
yields C ′ under the action of the transition function (which may also yield many other configurations
from C beside C ′). If all configurations in Si are halting configurations, then there are no further
sets.

This creates a computation tree.

A non-deterministic Turing machine M accepts a string σ if there is some branch in the compu-
tation tree that accepts σ, that is, there is some Si in the sequence with Ci ∈ Si accepting.

A non-deterministic Turing machine M rejects a string σ if every branch in the computation tree
results in a reject for σ, that is, there is some Si in the sequence with every Ci ∈ Si rejecting.

Searching a tree: Depth-first and breadth-first searches

Given a rooted, labelled tree T , starting at the root, we can explore T in two ways. In a depth-first
search (DFS), from the root, we go from child vertex to child vertex until we hit a leaf. Then we
go up and back down to a sibling of the leaf. Once all siblings have been explored, go up twice
then down and do the same for a sibling of the parent, and so on.

With a breadth-first search (BFS), we explore the tree one level at a time.

If T is infinite, a DFS can take us down an infinite path, meaning there could be vertices in T that
we never explore. With a BFS, every vertex will be explored eventually.

A DFS can be implemented with a stack, and a BFS can be implemented with a queue.

2

