3P17/4P17 COMPUTABILITY 2014-2015 Lecture Handout 3

A formalisation of tapes and computation

We have formally defined a Turing machine M as a 7-tuple M = (Q,%,T',6, qo, ¢acc, grej) but up
until now, we have not formally defined what the tape is.

This is easy to do: Letting Ng = {0,1,2,...}, a “tape”, along with symbols on it, is merely a
function 7' : Ny — I', where we always set 7'(0) = >. Then for integer ¢ > 0, T'(4) can be thought
of as the symbol “located ¢ squares to the right” of .

We can then define a configuration C' as a 3-tuple C' = (¢, T, i) where g € @ is a state, T' is a tape
function, and integer ¢ > 0 is a head location.

Then in the Turing machine M, C = (¢, T, i) yields C' = (¢/, T",4) if and only if §(¢, T'(i)) = (¢, =, d)
where

Lo [ifj =i , [i+1 ifd=R
T(j)_{T(j) it g ond Z‘{¢—1 ifd=1L

Then computation with the Turing machine M on input ¢ = o109...0,, defines a sequence of
configurations Cy, C1,Co, ..., where the starting configuration is Cy = (qo, 1o, 1) where Tp(0) = >,
To(i) = o; for 1 < i < n, and Tp(i) = U for ¢ > n. The sequence will be finite if M halts on o, and
will be (countably) infinite if M does not halt on o.

For a multitape Turing machine with k£ tapes, we can extend the above by having k simultaneous
tape functions.

Non-deterministic Turing machines

A non-deterministic Turing machine M is a 7-tuple M = (Q,%,T',6, qo, qacc, Grej) With @, 3, T
finite sets and qo, Gacc, Grej € €. These have the same meaning as in a single tape TM.

The transition function ¢ is different:

0 :Q\{qace, rej} X I' = P(Q x T x {L, R}),

where, for a set S, P(S) is the power set of S, i.e., the collection of all subsets of S.

Whilst in a deterministic TM computation is a sequence of configuration Cp,Cq,..., in a non-
deterministic TM it is a sequence of sets of configurations Sp, S,

So = {Cp} where Cj is the starting configuration. Then S,y is derived from S; in the following way:
A configuration C" = (¢/,T",i") is in S;41 if and only if there is some configuration C' = (¢, T, i) € S;
such that (¢/,z,d) € §(¢q,T(¢)) where

Lo if j =1 , [i+1 ifd=R
T(j)_{T(j) itq and {i—l ifd=1L

3P17/4P17 COMPUTABILITY 2014-2015 Lecture Handout 3
In other words, C” is in S;41 if and only if there is some (non-halting) configuration C' in S; that
yields C” under the action of the transition function (which may also yield many other configurations
from C' beside C"). If all configurations in S; are halting configurations, then there are no further
sets.

This creates a computation tree.

A non-deterministic Turing machine M accepts a string o if there is some branch in the compu-
tation tree that accepts o, that is, there is some S; in the sequence with C; € S; accepting.

A non-deterministic Turing machine M rejects a string o if every branch in the computation tree
results in a reject for o, that is, there is some S; in the sequence with every C; € S; rejecting.

Searching a tree: Depth-first and breadth-first searches

Given a rooted, labelled tree T, starting at the root, we can explore T in two ways. In a depth-first
search (DFS), from the root, we go from child vertex to child vertex until we hit a leaf. Then we
go up and back down to a sibling of the leaf. Once all siblings have been explored, go up twice
then down and do the same for a sibling of the parent, and so on.

With a breadth-first search (BFS), we explore the tree one level at a time.

If T is infinite, a DFS can take us down an infinite path, meaning there could be vertices in 7 that
we never explore. With a BFS, every vertex will be explored eventually.

A DFS can be implemented with a stack, and a BFS can be implemented with a queue.

