3P17/4P17 COMPUTABILITY 2014-2015 Lecture Handout 4

Non-deterministic Turing machines continued...

For configurations C and C^{\prime}, and a (state, symbol, direction) triplet $a=(q, x, d)$ that takes C to C^{\prime}, we shall write $C \xrightarrow{a} C^{\prime}$ or $C \xrightarrow{(q, x, d)} C^{\prime}$.

We shall refer to them as action triplets, so as not to confuse them with configuration triplets. So an action triplet transforms one configuration into another.

In a deterministic TM, the transition function δ specified only one action for a given (state, symbol) pair. In a non-deterministic TM, it specifies a set of actions.

Let $N=\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\mathrm{acc}}, q_{\mathrm{rej}}\right)$ be a non-deterministic TM.
The number of possible action triplets is $b=|Q| \times|\Gamma| \times|\{L, R\}|$, which is finite and so, we can assign each action triplet a unique i.d. number from the set $1,2, \ldots, b$.

In a computation tree, nodes are configurations. A computation tree for N on input $\sigma=$ $\sigma_{1} \sigma_{2} \ldots \sigma_{n}$ is defined as follows: The root node is the starting configuration $C_{0}=\left(q_{0}, T_{0}, 1\right)$. A configuration C^{\prime} is a child of configuration C in the tree if $C \xrightarrow{(q, x, d)} C^{\prime}$ and $(q, x, d) \in \delta(q, T(i))$. If a configuration is halting, it has no children.

A path of from the root to another node in the tree corresponds to a finite sequence $e=\left(e_{1}, e_{2}, \ldots, e_{r}\right)$ of action triple i.d.'s., each $e_{i}, \in\{1,2, \ldots, b\}$

Theorem 1. Every non-deterministic Turing machine has an equivalent single tape, deterministic Turing machine.

Proof. Let $N=\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\mathrm{acc}}, q_{\mathrm{rej}}\right)$ be a non-deterministic TM. We will simulate N with a deterministic multitape TM D by having D do a breath-first search of the computation tree of N. By Theorem 1 in Lecture Handout 2, there is a single tape deterministic TM that is equivalent to D, and therefore to N.

The deterministic TM D has three tapes. The input alphabet Σ_{D} of D is the same as the input alphabet Σ of N. The tape alphabet Γ_{D} of D is the union $\Gamma_{1} \cup \Gamma_{2} \cup \Gamma_{3}$ of the individual tape alphabets described below.

Tape 1 contains the input string and this tape is never changed. Therefore its alphabet is simply $\Gamma_{1}=\Sigma \cup\{\triangleright, \sqcup\}$.

Tape 2 maintains a copy of N 's tape on a branch of its non-deterministic computation, it has alphabet $\Gamma_{2}=\Gamma$.

Tape 3 acts like a queue - it keeps track of where D needs to try in N 's computation tree. It has alphabet $\Gamma_{3}=\{1, \ldots, \mathrm{~b}, *\}$, where $*$ is treated as a delimiter symbol. Tape 3 consists of sequences of action triplet i.d.'s separated by *. E.g., if $b=8$ then the tape might look like
$\triangleright \sqcup \ldots \sqcup 231 * 47 * 782 \sqcup \ldots$ which represents the queue $(2,3,1) *(4,7) *(7,8,2)$. A delimiter separates elements of the queue, e.g., $(2,3,1)$ is an element, and the head of the queue is the queue is the first element.

Processing an element of the queue: An element has form $e=\left(e_{1}, e_{2}, \ldots, e_{r}\right)$ where $r \geq 1$ and each $1 \leq e_{i} \leq b$ is an action triplet i.d. Assume tape 2 has the input σ with the head above the first symbol and and is otherwise blank. To process a queue element $e=\left(e_{1}, e_{2}, \ldots, e_{r}\right), D$ looks up the action $a_{i}=(q, x, d)$ of the identifier e_{i}, changes the symbol under head 2 to x, and moves it in the direction d. It does this for each e_{i} in turn until e_{r}.

Initially tape 1 contains the input σ and and tapes 2 and 3 are blank.

1. Copy tape 1 to tape 2 .
2. Use tape 2 to simulate the first step of N on σ, i.e., determine $\delta\left(q_{0}, \sigma_{1}\right)$. This will give a set action triplets. Add the i.d.'s of those triplets to the queue in some arbitrary order, separated by *.
3. Wipe clean tape 2 , copy tape 1 to tape 2 , and put the head of tape 2 above location 1 (the first square after $\triangleright)$.
4. Let $e=\left(e_{1}, e_{2}, \ldots, e_{r}\right)$ be the head of the queue. Process e.
5.Let $a_{r}=(q, x, d)$ be the action of e_{r} in the previous step.

If $q \neq q_{\mathrm{acc}}, q_{\mathrm{rej}}$, then look up $\delta(q, y)$ where y is the current symbol under head 2 . This retrieves a set $\left\{t_{1}, t_{2}, \ldots t_{s}\right\}$ of new action i.d.'s. Add each of $\left(e_{1}, e_{2}, \ldots, e_{r}, t_{1}\right),\left(e_{1}, e_{2}, \ldots, e_{r}, t_{2}\right), \ldots,\left(e_{1}, e_{2}, \ldots, e_{r}, t_{s}\right)$ to the back of the queue, separated by $*$.

If $q=q_{\text {acc }}$, then halt with accept.
If $q=q_{\mathrm{rej}}$, the continue to the next step.
6. Remove e and its delimiter from the head of the queue. If the queue is now empty, then halt with reject. Otherwise, go to step 3.

Church-Turing Thesis

In summary:
Given an alphabet Σ, a language $L \subseteq \Sigma^{*}$ is recognisable, or recursively enumerable if some Turing machine recognises it. Additionally, L is decidable, or recursive if some Turing machine recognises it and halts on any input $\sigma \in \Sigma^{*}$.

A function on Σ-strings $f: \Sigma^{*} \rightarrow \Sigma^{*}$ is computable or recursive if some Turing machine computes it (by which definition, the TM always halts).

For any multitape Turing machine M, there is a single tape Turing machine M^{\prime} that is equivalent, ie., recognises a language L if M recognises it, and decides L if M decides it.

For any multitape Turing machine M that computes a function $f: \Sigma^{*} \rightarrow \Sigma^{*}$, there is a single tape Turing machine M^{\prime} that also computes f.

For any non-deterministic Turing machine N, there is a deterministic Turing machine M^{\prime} that is equivalent, ie., recognises a language L if M recognises it, and decides L if M decides it.

For any non-deterministic Turing machine N that computes a function $f: \Sigma^{*} \rightarrow \Sigma^{*}$, there is a deterministic Turing machine M^{\prime} that also computes f.
Church-Turing Thesis: Given any reasonable model of computation, any function that is computable under that model (i.e., terminates in a finite number of steps with the correct answer), is also computable by a single tape, deterministic Turing machine.

Intuitively, an "algorithm" is a set of instructions for taking some input that, in a finite number of steps, gives some output, i.e. computing a function in a finite number of steps. Therefore, the Church-Turing thesis says that an algorithm is something that can be expressed as a (single tape, deterministic) Turing machine.

