
3P17/4P17 COMPUTABILITY 2014-2015 Lecture Handout 4

Non-deterministic Turing machines continued...

For configurations C and C ′, and a (state, symbol, direction) triplet a = (q, x, d) that takes C to

C ′, we shall write C
a−→ C ′ or C

(q,x,d)−−−−→ C ′.

We shall refer to them as action triplets, so as not to confuse them with configuration triplets. So
an action triplet transforms one configuration into another.

In a deterministic TM, the transition function δ specified only one action for a given (state, symbol)
pair. In a non-deterministic TM, it specifies a set of actions.

Let N = (Q,Σ,Γ, δ, q0, qacc, qrej) be a non-deterministic TM.

The number of possible action triplets is b = |Q| × |Γ| × |{L,R}|, which is finite and so, we can
assign each action triplet a unique i.d. number from the set 1, 2, . . . , b.

In a computation tree, nodes are configurations. A computation tree for N on input σ =
σ1σ2 . . . σn is defined as follows: The root node is the starting configuration C0 = (q0, T0, 1). A

configuration C ′ is a child of configuration C in the tree if C
(q,x,d)−−−−→ C ′ and (q, x, d) ∈ δ(q, T (i)). If

a configuration is halting, it has no children.

A path of from the root to another node in the tree corresponds to a finite sequence e = (e1, e2, . . . , er)
of action triple i.d.’s., each ei,∈ {1, 2, . . . , b}

Theorem 1. Every non-deterministic Turing machine has an equivalent single tape, deterministic
Turing machine.

Proof. Let N = (Q,Σ,Γ, δ, q0, qacc, qrej) be a non-deterministic TM. We will simulate N with a
deterministic multitape TM D by having D do a breath-first search of the computation tree of N .
By Theorem 1 in Lecture Handout 2, there is a single tape deterministic TM that is equivalent to
D, and therefore to N .

The deterministic TM D has three tapes. The input alphabet ΣD of D is the same as the input
alphabet Σ of N . The tape alphabet ΓD of D is the union Γ1 ∪ Γ2 ∪ Γ3 of the individual tape
alphabets described below.

Tape 1 contains the input string and this tape is never changed. Therefore its alphabet is simply
Γ1 = Σ ∪ {.,t}.

Tape 2 maintains a copy of N ’s tape on a branch of its non-deterministic computation, it has
alphabet Γ2 = Γ.

Tape 3 acts like a queue - it keeps track of where D needs to try in N ’s computation tree. It
has alphabet Γ3 = {1, . . . , b, ∗}, where ∗ is treated as a delimiter symbol. Tape 3 consists of
sequences of action triplet i.d.’s separated by ∗. E.g., if b = 8 then the tape might look like

1

3P17/4P17 COMPUTABILITY 2014-2015 Lecture Handout 4

. t . . . t 231 ∗ 47 ∗ 782 t . . . which represents the queue (2, 3, 1) ∗ (4, 7) ∗ (7, 8, 2). A delimiter sep-
arates elements of the queue, e.g., (2,3,1) is an element, and the head of the queue is the queue is
the first element.

Processing an element of the queue: An element has form e = (e1, e2, . . . , er) where r ≥ 1 and each
1 ≤ ei ≤ b is an action triplet i.d. Assume tape 2 has the input σ with the head above the first
symbol and and is otherwise blank. To process a queue element e = (e1, e2, . . . , er), D looks up the
action ai = (q, x, d) of the identifier ei, changes the symbol under head 2 to x, and moves it in the
direction d. It does this for each ei in turn until er.

Initially tape 1 contains the input σ and and tapes 2 and 3 are blank.

1. Copy tape 1 to tape 2.

2. Use tape 2 to simulate the first step of N on σ, i.e., determine δ(q0, σ1). This will give a set
action triplets. Add the i.d.’s of those triplets to the queue in some arbitrary order, separated by
∗.

3. Wipe clean tape 2, copy tape 1 to tape 2, and put the head of tape 2 above location 1 (the first
square after .).

4. Let e = (e1, e2, . . . , er) be the head of the queue. Process e.

5.Let ar = (q, x, d) be the action of er in the previous step.

If q 6= qacc, qrej, then look up δ(q, y) where y is the current symbol under head 2. This retrieves a set
{t1, t2, . . . ts} of new action i.d.’s. Add each of (e1, e2, . . . , er, t1), (e1, e2, . . . , er, t2), . . . , (e1, e2, . . . , er, ts)
to the back of the queue, separated by ∗.

If q = qacc, then halt with accept.

If q = qrej, the continue to the next step.

6. Remove e and its delimiter from the head of the queue. If the queue is now empty, then halt
with reject. Otherwise, go to step 3.

2

3P17/4P17 COMPUTABILITY 2014-2015 Lecture Handout 4

Church-Turing Thesis

In summary:

Given an alphabet Σ, a language L ⊆ Σ∗ is recognisable, or recursively enumerable if some Turing
machine recognises it. Additionally, L is decidable, or recursive if some Turing machine recognises
it and halts on any input σ ∈ Σ∗.

A function on Σ-strings f : Σ∗ → Σ∗ is computable or recursive if some Turing machine computes
it (by which definition, the TM always halts).

For any multitape Turing machine M , there is a single tape Turing machine M ′ that is equivalent,
ie., recognises a language L if M recognises it, and decides L if M decides it.

For any multitape Turing machine M that computes a function f : Σ∗ → Σ∗, there is a single tape
Turing machine M ′ that also computes f .

For any non-deterministic Turing machine N , there is a deterministic Turing machine M ′ that is
equivalent, ie., recognises a language L if M recognises it, and decides L if M decides it.

For any non-deterministic Turing machine N that computes a function f : Σ∗ → Σ∗, there is a
deterministic Turing machine M ′ that also computes f .

Church-Turing Thesis: Given any reasonable model of computation, any function that is com-
putable under that model (i.e., terminates in a finite number of steps with the correct answer), is
also computable by a single tape, deterministic Turing machine.

Intuitively, an “algorithm” is a set of instructions for taking some input that, in a finite number
of steps, gives some output, i.e. computing a function in a finite number of steps. Therefore, the
Church-Turing thesis says that an algorithm is something that can be expressed as a (single tape,
deterministic) Turing machine.

3

