Global Optimization for Hash-based Splitting

Paolo Medagliani*, Jérémie Leguay*, Mohammed Abdullah*, Mathieu Leconte*, Stefano Paris*
*Mathematical and Algorithmic Sciences Lab, France Research Center, Huawei Technologies Co. Ltd.
20 Quai du Point du Jour, 92100 Boulogne-Billancourt, France

Abstract—Load-balancing and network optimization in SDN
networks require efficient flow splitting during the path com-
putation phase. The way flow splitting is typically implemented
in switches is to map the output of an hash function computed
on the headers of incoming flows to the content stored in a
Ternary Content Addressable Memory (TCAM), a very efficient
but scarce resource. Although a large TCAM budget means that
the flow distribution can more accurately model a fractional ideal,
the distribution of flow volume amongst the paths is constrained
in reality to use only a limited number of TCAM rows. In this
paper, we present a flow splitting algorithm that maximizes the
total number of demands allocated in the network according to
the TCAM size constraints and, at the same time, minimize the
total routing cost. Although the problem is NP-hard, we show
through simulations that we can achieve good approximations of
the optimal solution in a reasonable amount of time.

I. INTRODUCTION

Network operators often use multi-path routing to load-
balance traffic for the sake of reliability and performance.
Spreading traffic over multiple paths to a given destination
can indeed improve reliability in case of failures and increase
the overall network utilization. Multi-path routing is generally
applied to large flow aggregates. To maintain the best routing
configuration in the network, the solution of a multicommodity
flow problem with fractional flows can provide a feasible split
configuration and can be computed in polynomial time [1].
However, in practice, deployments and hardware constraints
make the multi-path routing problem, also called the flow
splitting problem, NP-hard and thus challenging to solve. This
paper particularly aims at finding feasible split configurations
that maximize the overall network throughput.

The flow splitting problem is twofold: a routing problem
decides which paths to use, and a load-balancing problem
allocates portion of the flow aggregate to each path. To
process packets at very high speed, most routers and switches
implement hash-based splitting to spread flows over multiple
forwarding rules. These rules, often called buckets, are stored
in the expensive and power-hungry TCAM memory of network
equipments [2]. The number of rules allocated to a path
determines the traffic portion allocated to it. As a consequence,
due to memory limitation, only a restricted number of splits
are possible. Increasing the number of rules improves the split
accuracy with regards to an ideal split target, but leads to a
dramatic increase of memory consumption. This trade-off has
to be handled globally so that the number of accepted flow
aggregates is maximized.

The ECMP (Equal-Cost Multi-Path) [3] extension to OSPF
is the most commonly used technique to load-balance traffic. It

decouples the two problems (i.g., routing and load-balancing).
The routing protocol first provides a set of equal cost paths.
Then, ECMP equally splits flow aggregates over them based
on a hash computed over packet-header fields. Albeit simple to
implement, it assumes regular topologies with a high number
of equal cost paths to a given destination and an equal amount
of available capacity over them. In more general settings,
uneven flow splitting may improve network utilization, and
the use of unequal cost multi-paths techniques can further
increase performance. However, these two approaches solve
a local problem and do not attempt to maximize the overall
network throughput.

Several propositions have emerged in recent years to make
data plane elements programmable so that the control logic
can be offloaded to external units. To name a few: Forces [4],
PCEP [5] and OpenFlow [6]. This control and data plane sepa-
ration creates an opportunity to implement more efficient rout-
ing processes than classical protocols, since the controller can
take real-time decisions at a (logically) centralized place using
an accurate view of the network. Moreover, emerging Software
Defined Networking (SDN) controllers have a tremendous
computational power compared to legacy embedded devices.
This encourages the development of smarter network control
planes using cutting-edge optimization and parallel computing
techniques.

To cope with the above challenges, we start with for-
mulating the global multi-path routing problem with bucket
constraints as a Mixed Integer Linear Programming (MILP)
problem in order to get some insight on its limiting fac-
tors. We call this the Multicommodity Constrained Flow
Splitting (MCFS) problem. We prove that it is NP-Hard,
and present a practically-efficient approximation algorithm.
Our algorithm leverages on linear relaxations to exploit the
underlying structure of the problem.

Finally, we perform a thorough numerical evaluation of
the algorithm considering a realistic network topology and
traffic matrix. Numerical results highlight the strength of the
approach in terms of execution time, admitted traffic and
routing cost.

II. RELATED WORK

Flow splitting over multiple paths has been studied ex-
tensively. Many works advocate weighted traffic distribution
and relaxation of the equal cost constraint [7, 8] to increase
network utilization. However, the ECMP (Equal-Cost Multi-
Path) [3] extension to OSPF is still the most commonly used

technique to load balance traffic. Research now focuses on effi-
cient and practical ways to implement unequal cost and uneven
flow splitting. To address this problem, recent extensions of
ECMP such as Weighted-Cost Multi-Path (WCMP) [9] routing
or Niagara [10] have been proposed for uneven flow splitting
over equal cost paths. However, these two approaches solve a
local problem and do not aim to maximize the overall network
throughput.

Other proposals have been done for packet level split-
ting. FLARE [11] splits flows spatially using TCP sequence
numbers. DeTail [12] relies on backpressure and requires
modification of switches and the TCP receiver. LocalFlow [13]
measures the rate of each active flows, and runs a scheduling
algorithm at every single switch. It groups flows per destina-
tion, computes a fractional bin packing solution and rounds
the solution to reduce the number of flows that are split.

In contrast with previous proposals, our solution works
with legacy routers and for flow aggregates. Furthermore, by
considering the global optimization problem, it can be easily
extended to optimize several performance metrics in addition
to network throughput and routing cost.

II1. PROBLEM FORMULATION

This section introduces the flow splitting problem.

A. System Model

Let us consider a network topology represented as a graph
G = (V,E). Each vertex v € V corresponds to a network
node, while each directed arc (u,v) € E represents a network
link, whose bandwidth and cost per unit of traffic are denoted
by by, and ¢y, respectively.

A set D = {Dy,Ds,...,Di} of K demands must be
routed through the network. We model each demand k as
a tuple Dy = (sk,tk,dk,N;f), where parameters s; and g
represent the source and destination nodes, whereas dj, is the
amount of traffic to be routed. To use more efficiently network
resources, each demand can be served using multiple paths.
However, in order to limit jitter in the flow aggregate, the split
of the traffic over multiple paths (called flow splitting) can be
performed only at the ingress device using at most N;f paths.

Flow splitting is implemented in SDN switches using hash
functions, since they can be executed at the switching speed.
For every incoming packet of a flow, a hash is computed over
a portion of the packet header to determine which forwarding
rule to apply. The set of forwarding rules determines a split
configuration, characterized by the portion of the incoming
flow that is sent over different paths. Hash-based flow splitting
may deviate from the optimal fractional split solving the multi-
commodity flow problem. However, in practice, providing
a perfect representation of the optimal split with sufficient
precision is impossible as the number of forwarding rules that
can be inserted into a TCAM memory is bounded.

Figure 1 illustrates how hash-based splitting works. Packet
forwarding is decomposed in two sets of rules, stored in the
forwarding and group tables. In the forwarding table, a first
rule maps an incoming packet to its splitting group. In turn, the

group table contains entries that equally split flows over next
hops using a hash function. Unequal splitting over different
paths is achieved by repeating next-hops in the group table.
Entries in both tables are called buckets. The goal of an SDN
controller is to compute a feasible bucket allocation to be
applied inside each switch. Figure 1 shows an example where
demand D; is split over 3 sub-paths with ratios (¢, 3,). At
intermediate nodes of each sub-path (e.g., node .4) no split is
allowed and only one bucket is required to store a forwarding
rule. The forwarding and group tables of a switch u contain
respectively 7" and 7& buckets, under the constraint that their
sum does not exceed the TCAM size.

Forwarding rules are stored in TCAM of hardware switches.
This type of memory can perform high-speed packet lookups
in a single clock cycle. However, these components are power-
hungry and expensive. Therefore, SDN switches are usually
equipped with small TCAM that can store from a few hundred
to thousands entries [2], denoted as 7,, buckets. This limitation
reduces the number of possible splits and can lead to unfeasi-
ble allocation of demands. Table I summarizes all parameters
of the MCFS problem.

Table I: Notation for the MCFS problem

Parameters | Description
Sk Source node for demand k
ty Destination node for demand &
dy, Traffic generated by demand &
N;f Maximum number of paths for demand &
Cuw Cost of link (u,v)
buw Capacity of link (u,v)
Tu TCAM size of node w

B. MINLP Formulation

The Multicommodity Constrained Flow Splitting (MCFES)
problem that we address in this paper is to find as quickly as
possible for a set of K demands a network-wide split config-
uration which maximizes network throughput. The primary
objective is to accept as much traffic as possible, and the
secondary objective is to minimize routing cost.

To this end, we define the following decision variables.
Binary decision variables 2% € {0,1} indicate the links that
are selected to route demand k over one out of N;f paths
(p ={1,.. .,N;}). Specifically, zX? = 1 means that link
(u, v) belongs to the p-th path used to route the demand k from
its source to its destination. Real variables y*7 € R indicate
the amount of traffic sent over edge (u,v) for demand k on
its p-th path, whereas binary variables h*? € {0, 1} indicate if
some traffic of demand k is actually routed over the edge (u, v)
of the p-th path. In other words, h*? = 1 only if 2*» = 1 and
ykP > 0. As we will show, variables h*P are used to count
the number of forwarding buckets T,f at intermediate nodes,
since due to the rounding of the flow caused by the bucket
assignment at the source, some path might have zero flow.

Binary decision variables zg indicate the total number of

buckets used for demand k (z’g2 = 1 means that exactly @

Forwarding table (node 4)

dest. Forwardingtable (node 0) ;op Group table (node 0)
address D next-hop D1-subpath2 56.78.91.8
BN Match | Action ey Groupld | Hash | Next-Hop ps
demand Appl 1 0 56.78.91.1 1/6
D D1 G 1 yl } Nb entries: 7} 8
! LD 1 1 56.78.91.2
1/3 1/6 .1 -
demand D2 Forward to 1 2 5678912 | 0 L @ s@-_________-X7g
D, 56.78.91.2 -
1 3 56.78.913 3, L9
1 4 5678913 12 | \ @--_____-- -7 7
I 1/2 " -
Nb entries: 7 1 bucket 1 5 5678913 | | split 3a--7
ratios Split configuration for D,
for D,

Nb entries: r[?

Figure 1: Illustration of hash-based splitting. Forwarding and group table entries are shown for demands D; (split over 3

sub-paths) and D, (non split).

buckets are used for the splitting of demand k). Finally, given a
value of () buckets, the split of the bandwidth dj, requested by
demand k is decided using integer variables qu €{0,...,Q}.
Specifically, the split of the bandwigth dy, over the p-th path

is realized according to the ratio %, which is defined only
when zé =1 as illustrated in the following formulation.

The MCEFS problem turns out to be a multi-commodity flow
problem with additional constraints on the number of used

paths and the portion of flow assigned to selected paths. In
particular, MCFS can be formulated as follows:

k k
KNp KNp

max CZZ Z yffv—zz Z Cuvyﬁg

k=1p=1 (s;v)€EE k=1p=1 (u,v)EE

()]

sty @b, =1, > ok, =0, %))
(spv)€EE (ussp)EE
doow=0, Y wd =1 3
(tg;v)EE (ustg)EE
dDoowbh— D ah=0, VueV\{spti}, @4
(wv)eB (viw)€E
K Nﬁ
ST Yn < bue,)
k=1p=1
0 qkp
yeh = dpakt > %, ©6)
Q=1
NE 0
g =Qz, > =1, @)
p=1 Q=1
9 Ny
)BPILETH SD D T E ®
kEK: Q=1 keEK: p=1 (u,v)EE
Sp=u SpFu
Yyeb
it Sl WSS, Wbz ©
zb, hh €{0,1}, yib €R, (10)
at? €10,...,Q}, 286 €{0,1}, (11)

where (is some sufficiently large constant and 6 =
max{r,} is the maximum number of rules that can be stored
in a TCAM. When unspecified, the range of the variables is
as follows:

keK, pef{l,...,N}},

The objective function (1) in the above formulation maxi-
mizes the bandwidth accepted in the network, while the second
term minimizes the routing cost among all feasible solutions
with maximum accepted bandwidth. To this end, it suffices to
set ¢ = |K||V|maxNF - max ¢y, so that increasing the

keEK (u,v)€EE

ueV, (u,v) € E.

s

amount of accepted bandwidth will always be prioritized over
reducing the routing cost.

Constraints (2) to (4) are flow conservation constraints that
permit to route the traffic of each demand from its source sj
to its destination ¢, over a set N;f paths. They also prevent
cycles forming at the source or target.

Constraints (5) guarantee that the amount of traffic transmit-
ted on each directed link (u,v) does not exceed its capacity
by Constraints (6) compute the fractional flow yﬁ{j (i.e., the
bandwidth assigned to path p) as the product of the path
variable %P which indicates whether path p of demand k
uses edge (u,v), and the fraction of tkhe demand k that is
allocated to path p, namely dj 22:1 %. These inequalities
are nonlinear, since they involve the product of variables z*P
and qu . However, we will show below how they can be
replaced by a set of linear constraints in order to make the
overall formulation ILP.

The set of constraints (7) restricts the bucket configuration
by defining how many buckets are used for each path p
assigned to a demand k. In particular, the second constraint
in (7) selects only a single total number of buckets @) to be
used for demand & among the 6 possibilities at most, and the
first constraint guaranties that this number () is split among
the paths used by demand k. Because only one value of @ is

active at a time, the variables qu can be non-zero only for

k,
one value of) in (7). Therefore, the expression Z%zl a9”
in (6) gives the fraction of demand k which is allocated to
path p.

Constraints (8) guarantee that the forwarding rules defined
either for the splitting of a demand originated at node u, or
the paths that are passing through node wu, do not exceed
the TCAM capacity of u. Note that for counting how many
buckets need to be reserved for forwarding rules we cannot
sum over all demands the variables z*P that indicate the
activation of an outgoing link for a path p. Indeed, the optimal
solution might select a path with zero flow on it (i.e., z*2 =
and y*» = 0). For this reason, we use binary variables
hEP in the second summation of (8) and we further defined
constraints (9) to set variable hk? = 1 only if some traffic of
demand k is routed to the destination through path p on the
link (u, v). Finally, constraints (11) define the domains of our
decision variables.

We observe that the above formulation is for a network with
directed links. However, we could easily recover a formulation
with undirected links by interpreting (u,v) as being the
opposite direction of (v, u) and replacing y*2 by y*2 4 y* in
constraints (5).

After having introduced the Mixed Integer Non Linear
Programming (MINLP) formulation for the MCFS problem,
we now point out that constraint (6) can be linearized by
replacing it with the following sets of linear constraints:

qtr
yﬁg S dk 22:1 %7
p
yah >0, YD > di Yy 28 — di(1— 2h)
Unfortunately, even the derived MILP problem is NP-hard.
In fact, it is hard even to approximate within practically useful
bounds.

kp k,p
Yuv < dkxu'u)

Proposition 1. MCFS cannot be approximated to within
constant factors unless P = N P.

Proof. By setting b,,, = 1 forall uv € F, NI? = dy = 1 for all
k € K, and giving large enough bucket capacity at each node
(e.g., K is sufficient), we see that the maximum edge-disjoint
paths (EDP) problem reduces to MCFS. For both directed and
undirected graphs, EDP is NP-hard to approximate to within
constant factors [14] O

IV. OUR APPROACH

To solve the MCFS problem we have developed a meta-
heuristic referred to as Iferative Relaxation with Scaling and
Rounding (IRSR).

A. Iterative Relaxation with Scaling and Rounding (IRSR)

As the resolution of the MILP is unfeasible from a com-
putational point of view, we consider the linear relaxation by
removing path and bucket constraints. Solving the resulting
LP, which we call the Relaxed LP (RLP), will give a set of
allocations for a subset of the demands. The drawback of this
approach is that a demand Dj, may end up employing more
than ij paths, and since the volume of flow on each path is

fractional, it will also generally not be consistent with bucket
constraints placed in the original MILP. Thus, these violations
need to be corrected to get a feasible solution.

Suppose demand Dj was admitted in the solution of RLP
and suppose that N¥ > N¥ paths were allocated to it.
Consider the N;f — N;f paths with the least amount of Dy’s
bandwidth allocated to them. We delete them and uniformly
redistribute their bandwidth onto the remaining NZ’f paths.
Following this path redistribution, we proceed with bucket
rounding to attempt finding a feasible solution within a buckets
budget given to each demand by a bucket oracle.

Of course, in performing the above, it may be that edge
capacities get violated. We deal with this in two ways: firstly,
before solving RLP, we multiply edge capacities throughout
the network by (1 — «), where « € [0, 1) is a parameter. Con-
stricting capacities in this way may force the RLP to choose
more expensive paths, but it gives us leeway in performing
the subsequent redistribution and rounding phases (which are,
of course, performed with the actual edge capacities). In fact,
since we don’t know a priori what a good value of « is,
we attempt a set of them and choose the one that gives the
best outcome in terms of allocated bandwidth after the bucket
rounding phase. This can be done in parallel as SDN platforms
have large computational power.

The second way we deal with capacity violations is through
iteration: demands which get rejected for violating capacity
constraints become the input in another round of the algorithm.
We keep iterating until there is no improvement in the number
of allocations or all the demands are allocated.

We detail this process below. It should be noted that we
solve the RLP using Column Generation (CG) [15], which is
an approach that is often effective in coping with LPs with a
large number of variables. However, CG is not necessary, and
any algorithm for solving LPs may be used instead.

(1) Scaling Scale edge capacities by (1 — «).

(2) Relaxed LP (RLP) Remove path number and bucket
constraints, relax integer variables and solve.

(3) Intermediary buckets For each (fully or partially) allo-
cated demand Dy, remove one bucket entry from each node
on each path in the allocation (routing a path through a TCAM
costs one entry).

(4) Bucket oracle Use the oracle on the resulting network
and demand set to get a bucket budget B for each demand.
(5) Path redistribution For each (fully or partially) allocated
Dy, if Nl’f > N} paths were allocated to it, then uniformly
redistribute N* — N* excess paths on the most heavily
allocated Nl’f.

(6) Bucket rounding For each allocated Dy, for b =
1,..., By redistribute the flow amongst the allocated (at most
sz) sub-paths of Dy, in units of di /b so as to reproduce the
former allocation as faithfully as possible.

(7) Filtering Check which demands now violate edge ca-
pacity constraints. Perform this sequentially, always checking
against the network residual to the demands already allocated.
(8) Update residual buckets Update bucket utilization at

both source nodes and intermediate nodes for the demands
that were allocated during this iteration.
(9) Iteration All demands rejected in the previous phase
become the input to a reiteration of this algorithm. allocated.
It should be noted that bucket rounding is a non-trivial
problem. Our approach is as follows: for each allocated Dy
we allocate buckets one at a time, and in doing so, build up a
per-path flow profile for Dy, based on these buckets. If we are
going to add exactly b buckets in total, then each bucket adds
dr /b to the flow of the path it is assigned to. The bucket is
placed randomly per a probability distribution derived from the
flow profile induced by the current bucket allocation, and that
given by RLP solution. A larger difference of these profiles
on a particular path makes it more likely a bucket will be
assigned to that path.

B. Bucket Oracle

We use the following oracle-based procedure for bucket
allocations. The goal here is to decide an initial maximum
number of buckets for each demand so as not to exceed the
TCAM size and to keep flexibility for the subsequent rounding
step, so that we can split with reasonable accuracy the demands
which require it. In this work, splits are only performed at
source nodes of the demands. Intermediate nodes on a path
only need one bucket to be able to forward packets.

To leave space for demands on intermediate nodes, we a
priori reduce the TCAM capacity 7,,. In the rest of the paper,
we consider a capacity reduction of 50%.

To make sure that this remaining budget of buckets is not
exceeded when performing splits, we split this budget into
individual bucket budgets By for each demand originating at
node u, such that ZkeKu By, = Tu, where K, := {k € K :
s = u}. In order to set the values of By, we leverage mainly
on the intuition that large demands require more buckets to
achieve a reasonable split accuracy. Therefore, we will allocate
individual bucket budgets), in order to maximize a fairness
criterion between demands which gives higher weight to larger
demands. In particular we choose to maximize proportional
fairness among demands in our bucket allocation, i.e., we set
{Bk} ke, such that it approximately solves

max

dk lo Bk
BiEN, VEEK, Z & Sk
Xrery, Br<Tu ke K

Optimizing the above fairness criterion can be approximately
done in a simple way: we can define a Lagrangian multiplier A
for the constraint > kEK, By < T,, iteratively assign buckets
based on A using B; = max {1, dT"} and adjust A using
dichotomy search to converge towards using up the whole
bucket budget.

Subsequently, after each demand is processed, the oracle is
called again, operating on the basis of the remaining demands
and the remaining (unused) buckets.

V. PERFORMANCE EVALUATION

This section illustrates the performance of our algorithm to
solve the MCFS problem in a realistic network scenario.

A. Experimental Methodology

We used a network topology generated with the random-
connection model [16]. To mimic real world topologies like
GEANT, we considered 60 nodes, a nodal degree of 3, link
capacity of 40 GB, and link costs according to a uniform
distribution in [1; 10]. We consider several number of demands
k € {600;2100} with random source and destination pair.
The requested bandwidth dj, is generated according to a Zipf
distribution of exponent ¢ = 0.5. The maximum size of the
demands is set to 48 GB, to depict the presence of elephant
flows transferred in the network. The average demand size, that
depends on the number of generated demands, ranges between
5.3 GB and 2 GB. As SDN switches are usually equipped with
small TCAM to store from a few hundred to thousands entries,
we considered a TCAM size of 3000 for each node.

We compare IRSR with upper and lower bounds for the
total amount of accepted traffic. The upper bound consists of
RLP, the linear relaxation of the problem without constraints
and splittable flows. The lower bound is obtained by solving
the unconstrained multi-commodity flow problem with integer
flows with column generation and randomized rounding (Inte-
ger Linear Problem without Flow Splitting, ILP No FS). The
third considered benchmark is a greedy Successive Shortest
Path (SSP) algorithm without flow splitting. In this case, for
each demand we compute the shortest path on the residual
graph: either the demand is accepted and the network capacity
updated or it is rejected if there is no spare capacity.

As performance metrics, we consider the proportion of ac-
cepted traffic (i.e., the fraction of traffic successfully admitted
with respect to the input load), the routing cost per unit
of accepted traffic (i.e., the ratio between the total accepted
bandwidth and the cost for routing the accepted traffic '), and
the execution time of each algorithm to compute a solution.
Each points depicted in the plots illustrated in this section
is the average of 10 independent experiments. As the upper
bound gives an unfeasible solution from the point of view
of flow splitting, we will consider it only for the accepted
bandwidth performance.

Results of the IRSR approach have been obtained by con-
sidering different factors of scaling a = {0.005,0.01}. As this
scaling operation can be easily parallelized, the execution time
for IRSR will be evaluated based on a parallel implementation.
We implemented the algorithms in C++ and ran simulations
on a Linux Server with 40 Intel(R) Xeon(R) CPU E5-2690 v2
3.00GHz cores with 25MB cache and 192 GB of RAM.

B. Performance Analysis

Figure 2 shows the total accepted bandwidth, the average
routing cost per unit of accepted traffic and the execution time
of the proposed algorithms as a function of the number of
demands (up to 2100). We first observe that IRSR can allocate
almost all the demands offered to the network when we

'We point out that the cost of a demand on a link through which it is routed
is defined as the product of the bandwidth of the demand and the cost per
unit of bandwidth of the link.

4 X107
[lLP (optimum unfeasivie) [liRsr [iLe no Fs llssp

b

MRsR MILP No Fs llssP

o

3

| ‘l
0
00 800 1200 1600 2000 2400

g 400 800

Accepted bandwidth [Bytes]
o

Cost per unit of bandwidth [$
S

Number of demands

(a) Accepted bandwidth

8 HiRsR BILP No Fs lissP
ES6
z 4
il
% m_ I_ - | _ _

1200
Number of demands

(b) Routing cost

Running time [s]

1600 2000 2400 4 800 1200 1600

Number of demands

2000 2400

(c) Execution time

Figure 2: Accepted bandwidth (a) and execution time (b), and (c) average routing cost as a function of the number of demands.

compare the total accepted traffic with RLP. When the number
of demands is low (corresponding to an average demand size
of 5.3 GB) IRSR benefits from the possibility of splitting to
keep the number of rejected demands low. Vice versa, ILP No
FS and SSP reject some demands because they cannot split
elephant flows. When the number of connections increases,
IRSR still performs very close to RLP. ILP No FS still has
good performance because instead of big demands it allocates
smaller flows, which have lower size and can fit in the network
without being split. Instead, as SSP is based on shortest path
routines, it quickly experiences performance degradation as it
always tries to use the cheapest path.

Considering the cost per unit of bandwidth, due to the
underlying CG routine, there is no difference between IRSR
and ILP No FS, as the cheapest links are used to allocate
the demands. After K' = 1200, despite big demands can be
rejected, the cost per unit of bandwidth decreases as cheapest
links are packed allocating the smallest flows. SSP instead,
uses more expensive links as soon as it introduces bottlenecks
on the cheapest ones. For such a reason, it turns out that it
always has a higher routing cost even in the case where it has
bandwidth acceptance performance comparable to ILP No FS.

Finally, considering the execution time, IRSR and ILP No
FS have very similar performance. The largest part of the time
is consumed by running the CG algorithm. Despite IRSR runs
on the top a rounding routine that is not present in ILP No
FS, the execution time does not increase significantly.

VI. CONCLUDING REMARKS

We presented a flow allocation problem for networks with
forwarding rules held in TCAM, whose scarcity creates a
trade-off between the precision of the solution allocated into
the network and the number of demands that can be accepted.
Finding an optimal path allocation that takes into account the
use of buckets is NP-hard even to approximate within constant
factors. Thus, we proposed an approach for maximizing the
accepted bandwidth while respecting capacity and bucket
constraints. As far as we are aware, this paper is the first work
that takes into account global path allocation and TCAM-based
flow splitting at the same time.

We evaluated through simulations the performance of the
proposed algorithm in terms of accepted bandwidth, routing
cost and execution time. Results show that IRSR finds feasible
split configurations which maximize the accepted throughput

and minimize the routing cost. In the presence of elephant
flows whose size is comparable to link capacity, our approach
allows to achieve accepted traffic performance which is very
close to that of the relaxed problem.

Extensions of this work will consider the interaction be-
tween a global optimization achieved periodically, such as
the one presented in this work, and local rules executed
in real-time to correct the allocation of individual flows to
buckets. The assumption behind hash-based splitting is that
individual flows are several orders of magnitude smaller than
the aggregate. However, there might be situations where a few
individual flows are large and local rules may be required to
limit the deviation from the target split ratio decided globally.

REFERENCES

[11 T. H. Cormen, Introduction to algorithms. MIT press, 2009.

[2] K. Kannan and S. Banerjee, “Compact TCAM: Flow entry compaction
in TCAM for power aware SDN,” in Distributed Computing and
Networking. Springer, 2013, pp. 439-444.

[3] D. Thaler, “Multipath issues in unicast and multicast next-hop selection.
internet engineering task force: RFC 2991,” 2000.

[4] A. Doria, “Forwarding and Control Element Separation (ForCES) Pro-
tocol Specification,” RFC 5810, IETF (March 2010).

[5] J. P. Vasseur, “Path Computation Element (PCE) Communication Pro-
tocol (PCEP),” RFC 5440, IETF (March 2009).

[6] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: Enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, Mar. 2008.

[7]1 S. Prabhavat, H. Nishiyama, N. Ansari, and N. Kato, “On load distri-
bution over multipath networks,” Communications Surveys & Tutorials,
IEEE, vol. 14, no. 3, pp. 662-680, 2012.

[8] G. M. Lee and J. Choi, “A survey of multipath routing for traffic
engineering,” Information and Communications University, Korea, 2002.

[9] J. Zhou, M. Tewari, M. Zhu, A. Kabbani, L. Poutievski, A. Singh, and

A. Vahdat, “WCMP: Weighted Cost Multipathing for Improved Fairness

in Data Centers,” in ACM EuroSys, 2014.

N. Kang, J. Reumann, A. Shraer, and J. Rexford, “Efficient Traffic

Splitting on SDN switches,” Tech. Rep., 2015.

S. Sinha, S. Kandula, and D. Katabi, “Harnessing tcps burstiness using

flowlet switching,” Proceedings of ACM Hot-Nets, 2004.

D. Zats, T. Das, P. Mohan, D. Borthakur, and R. Katz, “Detail: reducing

the flow completion time tail in datacenter networks,” ACM SIGCOMM

Computer Communication Review, vol. 42, no. 4, pp. 139-150, 2012.

S. Sen, D. Shue, S. IThm, and M. J. Freedman, “Scalable, optimal flow

routing in datacenters via local link balancing,” in ACM CoNEXT, 2013.

V. Guruswami, S. Khanna, R. Rajaraman, B. Shepherd, and M. Yan-

nakakis, “Near-optimal hardness results and approximation algorithms

for edge-disjoint paths and related problems,” in ACM STOC, 1999.

G. Desaulniers, J. Desrosiers, and M. Solomon, Eds., Column genera-

tion, ser. GERAD 25th anniversary series. New York: Springer, 2005.

M. D. Penrose, “On a continuum percolation model,” Advances in

applied probability, pp. 536-556, 1991.

[10]
[11]
[12]

[13]

[14]

[15]

[16]

