
Network Slicing with Splittable Flows is Hard
Georgios S. Paschos, Mohammed Amin Abdullah, and Spyridon Vassilaras

Mathematical and Algorithmic Sciences Lab, Paris Research Center, Huawei Technologies, France
{georgios.paschos, mohammed.abdullah, spyros.vassilaras}@huawei.com

Abstract—Allocating resources to network slices can be
achieved by means of solving virtual network embedding
problems, whereby virtual nodes are used to reserve
computing resources on cloud nodes, and virtual links are
used to reserve bandwidth resources on network paths.
Since the associated optimization problem is also NP-
hard to approximate, in this paper we focus on a natural
simplified setting of interest: the case where the tunnels
can be embedded with splittable flows. For this problem,
we provide a simple proof that it is NP-hard by a reduction
from the 3-SAT problem. Further, using the idea of the
multipartite graph, we propose a poly-time heuristic for the
loose capacity constraint case, based on linear relaxation
and randomized rounding. This heuristic is shown to have
small optimality gaps in extensive simulations.

I. INTRODUCTION

In the problem of Virtual Network Embedding (VNE)
with unsplittable flows (termed hereinafter VNE-UF) we
are given a physical network with costs and capacities on
links and we are asked to find an embedding of a virtual
network onto the physical with minimum cost [10]. The
virtual network consists of a graph with virtual nodes
(vNodes) and virtual links (vLinks), and its embedding
consists in assigning each vNode to a physical node
among a set of options, and each vLink to a path in the
physical network connecting the corresponding vNode
embeddings, cf. Fig. 1. This problem is of supreme im-
portance for future edge clouds, but also of combinatorial
nature and therefore quite difficult to solve; with node
embedding fixed, VNE-UF becomes equivalent to the
well-known minimum cost unsplittable multicommodity
flow which is NP–hard [14].

In general, we would like to simplify the VNE-UF
problem as much as possible such that its solution is
still useful. To this end, note that splitting the flow
is possible in many modern Software Defined Network
(SDN) architectures [24]. Hence, in this paper we con-
sider the VNE problem with splittable flows (VNE-SF),
where instead of paths, the vLinks are embedded with the
form of a splittable flow, i.e., the vLink demand can be
transported over multiple paths. We remark that splitting
the VNF placement over multiple computing nodes is
also possible by means of resource disaggregation [4],
[15], but it creates the overhead of maintaining the state
consistency between the different parts of the VNF, and
hence we leave this consideration for future work. We
may observe that VNE-SF is significantly easier than
VNE-UF: if we fix the node embedding as before, the

Fig. 1. Virtual network embedding with unsplittable flows.

remaining problem is a Linear Program (LP) solvable in
polynomial time. However, the actual complexity of the
VNE-SF problem is unknown.

In this paper, we prove that the VNE-SF remains NP–
hard by a novel reduction from 3-SAT. Our reduction is
based on the idea of relaxing the link capacities and
then studying the VNE-SF as an assignment problem
on a multipartite graph where the link costs can be
computed as shortest paths. Using the same multipartite
graph we then propose a heuristic method based on linear
relaxation and randomized rounding, which works for
VNE-UF and VNE-SF with loose capacity constraints
and is shown to perform well in extensive simulations.

The embedding of virtual networks (both splittable
and unsplittable variants) is a very important research
topic for future edge clouds. Soon network functionality
like firewalls, caches, and authentication will be per-
formed by software middleboxes, called Virtual Network
Functions (VNFs). The VNFs will run at different cloud
locations on general purpose computing hardware, and
traffic will be steered among them remotely using Soft-
ware Defined Networks. Combining these two enabling
technologies, it will be possible to launch applications
when-and-where, satisfying diverse and demanding re-
quirements, in the form of virtual networks called net-
work slices [21]. Examples of such applications include
but are not limited to: (i) control of autonomous vehicles,
(ii) virtual / augmented reality and remote surgery,
(iii) high accuracy industry communications, and (iv)
control of robots and smart grids. The contribution of
network slicing to these applications is that it will allow
them to co-exist on the same infrastructure. However,
to effectively allocate resources to these different slices,
we require a nimble controller that continuously solves
resource allocation problems and quickly decides what
is the appropriate embedding of the virtual network.

In this context, the VNE-UF problem is a fundamental
mathematical problem for provisioning resources for net-
work slices. Unfortunately one major bottleneck in the
above plan is the complexity of the VNE-UF problem.
Our contribution in this paper is thus to further the
understanding of the complexity of this problem and to
propose efficient solutions. Specifically:
• We formulate the VNE-SF problem with splittable

flows, and we show it is NP–hard by a reduction
from 3SAT.

• Assuming large-enough capacities, we provide a
local search algorithm that always converges to a
local minimum in polynomial time.

II. SYSTEM MODEL

Physical network: Our network infrastructure is de-
scribed by a graph P = (N,L, b, c) with physical nodes
N and links L. The total amount of flow that can be
routed through link l ∈ L is limited by capacity bl, and
there is a routing cost cl for each unit of flow. Depending
on the application, the costs may be monetary (e.g., when
renting resources), or refer to metrics such as energy and
congestion.

Virtual network: We receive requests for virtual
networks to be implemented on the physical infras-
tructure. A request is depicted by another graph G =
(V,E,M ,d), with virtual nodes (vNodes) V and virtual
links (vLinks) E. Each vNode v ∈ V has a set of options
Mv ⊆ N , i.e., physical nodes where it can be embedded.
Each vLink e ∈ E is associated to a demand de, which
denotes the total amount of flow that will be circulated
on the virtual network over this vLink.

Virtual network embedding for unsplittable flows:
The embedding of G on P in the unsplittable flow
scenario asks for the embedding of vNodes V and the
embedding of vLinks E. To embed vNode v we simply
need to pick one physical node from the options Mv .
This can be achieved by the use of binary variables
xvn ∈ {0, 1} that take value 1 iff the vNode v is
embedded on node n. To embed vLink e = (v1, v2) we
need to find an acyclic path in the physical network P
that connects the embeddings of v1, v2, i.e., that connects
two physical nodes n1, n2 such that xv1n1 = xv2n2 = 1.
Let yel ∈ {0, 1} take value 1 to denote that vLink e is
embedded on a path that includes link l and 0 otherwise.
For each vLink e = (v1, v2), ensuring that the link
embedding takes the form of a path on the physical
network corresponds to certain flow-type constraints at
each physical node:∑
j∈Out(n)

ye(n,j)−
∑

j∈In(n)

ye(j,n) = xv1n−xv2n, ∀n ∈ N,

where In(.) and Out(.) denote the set of incoming and
outgoing neighbor nodes respectively. Observe that the
term xv1n−xv2n can take values 1, 0,−1 depending on

Fig. 2. An example of a virtual network embedding with splittable
flows. The vLink demands are split over multiple paths, which consti-
tute a splittable flow.

whether the inspected node n is a source, an intermedi-
ate, or a destination node of the path, as is customary
with flow conservations.

The objective is to find a feasible virtual network
embedding that minimizes the total cost. This leads to the
problem of Minimum Cost Virtual Network Embedding
with Unsplittable Flows (VNE-UF), formalized as:
VNE-UF

minimize
x∈{0,1}V N

y∈{0,1}EL

∑
e∈E
l∈L

cldeyel (1)

subject to
∑
e∈E

deyel ≤ bl, ∀l ∈ L, (2)∑
n∈N

xvn = 1, xvn = 0, if n /∈Mv, ∀v ∈ V, (3)∑
j

ye(n,j) −
∑
j

ye(j,n) = xv1n − xv2n,∀n ∈ N. (4)

The objective
∑

e∈E,l∈L cldeyel reflects the total cost
of physical link usage by our vLink embeddings. Con-
straint (2) is the link capacity constraint, constraint (3)
ensures that vNode v is embedded only once and only
at available options Mv , while constraint (4) is the flow
conservation mentioned above.

The VNE-UF is very general as it subsumes a number
of important problems such as (i) the resource allocation
for network slices [21] (ii) the VNF chaining problem
[2], (iii) the joing optimization of routing and VNF
placement [1], (iv) the optimal functional split in C-RAN
[17], (v) the embedding of computation graphs on net-
works [22], and (v) the minimum cost multicommodity
flow problem [8]. In extended variants, it might be useful
to consider (i) multiple virtual networks [3], (ii) QoS
and survivability constraints [21], as well as (iii) online
variants [6], [23].

The VNE-UF problem is an Integer Linear Program.
Fixing the node embedding, i.e., assuming Mv sets are
all singletons, the problem becomes the well-known
minimum cost unsplittable multicommodity flow, which
is known to be NP–hard [8]. In parallel to the writing
of this paper, [20] appeared, which claims that VNE-UF
is APX-hard, i.e., it is NP–hard to approximate within a
constant factor.

A. VNE for Splittable Flows

In this paper we relax the integrality of the vLink
embedding variables yel and allow the embedded vLinks
to circulate traffic in the form of a splittable flow, which
flows over a set of paths instead of a single path. This
can be done by simply letting yel ∈ [0, 1], in which case
yel denotes the fraction of vLink demand de which is
routed over physical link l, as illustrated in Fig. 2. The
corresponding problem becomes:
VNE-SF

minimize
x∈{0,1}V N

y∈[0,1]EL

∑
e∈E
l∈L

cldeyel (5)

subject to
∑
e∈E

deyel ≤ bl, ∀l ∈ L, (6)∑
n∈N

xvn = 1, xvn = 0, if n /∈Mv, ∀v ∈ V, (7)∑
j

ye(n,j) −
∑
j

ye(j,n) = xv1n − xv2n,∀n ∈ N. (8)

B. Related Work

First, we discuss the importance of the VNE-UF
problem. When orchestrating optical networks, VNE-UF
is used to map an electrical network configuration onto
the optical infrastructure [19]. Typically, in this proce-
dure, further constraints should be added, e.g. Quality
of Service constraints, resiliency, and optical wavelength
allocations. Hence, the VNE-UF serves in this case as
a cornerstone problem, and its complexity affects also
the corresponding generalizations. In the recent literature
of edge computing, a great deal of research is devoted
to the problem of mapping Virtual Network Functions
arranged in a chain, studied under the name of VNF
chaining [2]. This problem is a special case of VNE-
UF where the virtual request graph G is a simple line
network. In fact, due to the graph restriction this problem
is simpler and admits efficient approximations [7]. In
future virtualized mobile networks such as C-RAN, the
goal is to decouple mobile network processing function-
ality from transmitting capabilities and economize the
networks using commodity hardware-based data centers
to host the functionality and dumb remote radio heads
to transmit. Prior work studies the optimal functional
splitting, i.e., the decision of keeping some parts of
the network processing at the edge of the network and
pushing the rest to the cloud [12]. In the upcoming 5G
wireless networks, mobile edge computing applications
will be provided isolated resources by means of network
slices, essentially virtual networks co-existing on the
global infrastructure.

A common feature in all the above scenarios is the
fact that the solution of the VNE-UF problem is a
potential computational bottleneck in performing re-
source allocation operations. For large-scale virtualized
infrastructures, resolving VNE-UF is one of the most

important networking challenges for the future. Given
that VNE-UF is APX-hard [20], the next question is how
to address this problem in an efficient manner. Several
past works [1], [2], [10], [11], [13], [18], [19] focused
on proposing heuristic algorithms that can obtain a
solution in polynomial time, but without any guarantees.
Another line of work provides approximation algorithms
for special graphs [7], while some papers propose to
study the linear relaxation of the problem [9], or studying
corresponding problems with convex objectives [16].
The latter approach essentially assumes that resources
are divisible in the network. In this paper, we focus
on the important case where routing is splittable, but
function placement is integral. In section III we will
prove that the VNE-SF problem is NP–hard. Then in
section IV we will propose a polynomial time heuristic
algorithm based on linear programming relaxation and
randomized rounding.

For completeness, we mention that the work of Rost
and Schmidt which appeared in the report [20] in parallel
with this work also includes a complexity result for our
case. However, our proof is more specific and simpler,
and hence of potential interest to the community.

III. HARDNESS OF VNE-SF

A. The Multipartite Graph

Fundamental to our approach is the construction of the
multipartite graph Ĝ = (V̂ , Ê, ĉ), which aims to capture
the combinatorial structure of embedding options. The
nodes V̂ are defined to be the union1 of all candidate
physical nodes V̂ = ∪v∈V Mv , and the links Ê are
defined in the following way. First, for each vLink e =
(v1, v2) ∈ E we identify the two node subsets Mv1 ,Mv2

and then we denote with Ê(l) the links of the utility
graph formed by these two subsets (i.e., we connect all
nodes of Mv1 to all nodes of Mv2). Ultimately, we define
Ê = ∪e∈EÊ(l). Last, on each link e = (n1, n2) ∈ Ê we
introduce the cost ĉe which equals to the shortest path
cost connecting the two physical nodes n1, n2 ∈ N . We
provide in Fig. 3 a pictorial example.

We note that the multipartite graph can be constructed
in polynomial time by computing all involved shortest
paths, which can be done in, e.g., O(|N |3) time via
Floyd-Warshall.

Recall that xvn is 1 iff vNode v is embedded on
physical node n. Consider the following subgraph se-
lection problem, which we term the multipartite graph
embedding.

1Taking the union of the sets works only for disjoint sets Mv

(but simplifies exposition). In case these sets are not disjoint, the
multipartite graph can be formulated with an alternative naming
convention such that each physical node appears in the multipartite
graph as many times as in all the sets Mv .

Fig. 3. An example of a multipartite graph construction.

MGE

minimize
x∈{0,1}V N

∑
v∈V
u∈V

∑
i∈N
j∈N

Cij,vuxvixuj

s.t.
∑
n∈N

xvn = 1, xvn = 0, if n /∈Mv, ∀v ∈ V,

where Cij,vu =

{
ĉijdvu if i 6= j
0 otherwise.

Consider the condition bl >
∑

e∈E de, ∀l ∈ L. If
this condition is true, then under any embedding the link
capacity constraint (6) is satisfied. We call this condition
“loose capacities”.

Lemma 1. MGE, VNE-SF and VNE-UF are equivalent
problems under the condition of loose capacities.

The proof of the lemma is straightforward by noticing
that under loose capacities, an optimal solution of VNE-
SF will always be routed over shortest paths (no flow
splitting), and hence the cost used in the multipartite
graph is always the correct one.

B. The 3-SAT Problem

In this subsection we give a brief reminder of the
NP–complete [5] 3-SAT problem. Consider N Boolean
variables x1, . . . , xN . A clause is a disjunction of literals
e.g., (x2 ∨ x4 ∨ x7), where a literal is a variable xi

or its logical negation xi. In the 3-SAT problem, there
is a conjunction of a finite number of clauses, each
clause has exactly three literals and the problem is to
know if there is any assignment of the variables which
results in the expression evaluating to True, that is, if the
expression is satisfiable. E.g., the following expression
is satisfiable as can be confirmed by the assignment
x1 = True, x2 = False, x3 = True, x4 = True

C(x) = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3 ∨ x4)

∧ (x2 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x4),

which we can write more compactly as

C(x) = C1(x) ∧ C2(x) ∧ C3(x) ∧ C4(x)

with Ci(x) defined in the obvious way.

C. The Main Result

Theorem 2. The VNE-SF problem is NP–hard.

Proof. We show that the decision version of the VNE-SF
problem is NP-complete by reduction from 3-SAT. We
will assume that we are given a black box algorithm that
can solve in polynomial time any instance of the VNE-
SF, and then we will show that we can apply this black
box algorithm on the multipartite graph to decide any
instance of the 3-SAT decision problem in polynomial
time, which completes the reduction.

Consider an arbitrary instance of the 3-SAT problem
C(x) =

∧K
k=1 Ck(x). The multipartite graph Ĝ =

(V̂ , Ê, ĉ) is constructed from the 3-SAT problem in-
stance as follows: Each instance of a literal is given its
own variable, meaning that if the literal is in more than
one clause, there will be a variable for each of those
clauses, and the clauses define the partitions. Thus, with
slight abuse of notation, V̂ = {vki : xi ∈ Ck or xi ∈
Ck} (we may assume that no clause contain a literal
and its negation since this is always true and can be
eliminated from the problem).

The clauses Ck define a partition of the vertex set in
the obvious way, and the there is an edge between every
pair of nodes that are in different partitions/clauses. The
cost of an edge e = (vki , v

l
j) is 0 unless i = j and

they represent negations of each other, i.e., vki represents
xi (or xi) and vli represents xi (xi). In the latter case,
the cost is 1. Hence, we give cost 1 to edges that
connect literals that cannot both be true at the same time
otherwise give it cost 0 as shown in the figure.

Fig. 4. Multipartite graph for two clauses of a 3-SAT instance.

Since the number of clauses in the expression C(x)
is at most polynomial to N , the multipartite graph for
all the clauses can be built in polynomial time as well.

Now the question “is there a x ∈ {0, 1}N that satisfies
C(x) = 1?” can be answered in the following manner.
We create the multipartite graph as above, and then
call the given black box algorithm, which provides the
minimum cost embedding in polynomial time. If the cost
of the embedding is 0, the answer is YES, if the cost is
positive, the answer is NO.

To verify this, note that a zero cost embedding allows
a selection of a node at each clause that can be set to 1
without any conflicts with any other clause. Additionally,

if the minimum cost is positive, it means that there
exists no zero cost embedding, and hence no conflict-
free allocation to make all clauses 1.

IV. HEURISTIC POLYNOMIAL-TIME ALGORITHM

In this section, we present a polynomial time heuristic
for solving the MGE problem and evaluate the optimality
gap between the heuristic and the optimal solution in ran-
domly generated multipartite graphs. We also apply this
heuristic to solve the VNE problem with loose capacities
for randomly generated VNE problems. Surprisingly the
optimality gaps in the second case are much smaller
which is an interesting finding, very useful in practical
applications. The reason for this phenomenon will be
explained later on.

First let us write the MGE problem in the follow-
ing linear form by introducing the additional variables
yij,vu = xvixuj which take the value 1 iff node v is
embedded on node i and node u on node j:
MGE-IP

minimize
x∈{0,1}V V̂

y∈{0,1}Ê

∑
v∈V
u∈V

∑
i∈V̂
j∈V̂

Cij,vuyij,vu (9)

s.t.
∑
n∈V̂

xvn = 1, xvn = 0, if n /∈Mv, ∀v ∈ V, (10)

∑
j∈V̂

ynj,vu −
∑
j∈V̂

yjn,vu = xun − xvn,

∀n ∈ V̂ , (u, v) ∈ Ê, (11)

where Cij,vu =

{
ĉijdvu if i 6= j
0 otherwise.

Our heuristic starts by solving the LP relaxation of
the above problem where both the node embedding xui

and bipartite link selection yij,vu variables are assumed
continuous in [0, 1]. The obtained fractional solution is
then rounded as follows: among the node embedding
variables xui for the same virtual node u, the largest
one is rounded to 1 and the others to 0. In case two or
more node embedding variables for the same virtual node
are equal (and larger than all the others), the first such
variable (i.e., the variable with the lowest i) is rounded
to 1 and all others to 0. Note that the values of the yij,vu
variables are uniquely defined by knowing the values of
all xui when considering integer 0,1 solutions.

A local search is then performed to improve the
rounded solution. The local search takes all virtual
nodes one by one and tries to embed them on different
multipartite graph nodes while keeping all other node
embeddings fixed. This way we determine the lowest
cost embedding for a given node, keep this embedding
fixed and proceed to the next virtual node until all nodes
have been considered. Obviously, this local search takes
polynomial time and since the LP solution and rounding
are also of polynomial complexity, the complete heuristic
algorithm is polynomial.

A. Numerical results

In order to demonstrate the performance of our heuris-
tic algorithm, we experiment with randomly generated
graphs. More specifically, we randomly generate phys-
ical and virtual network graph pairs as follows: Physi-
cal networks are G(N, p) Erdos-Renyi random graphs,
where N is the number of nodes in the graph and p
the probability that two nodes are connected. Virtual
networks have V vNodes randomly connected so that
each vNode has a degree approximately equal to d. Each
vLink is assigned a traffic demand duv drawn uniformly
in [dmin, dmax]. Each physical link is assigned a cost cij
drawn uniformly in [cmin, cmax]. Each vNode must be
embedded to one of the physical nodes in a constraint
set. Constraint sets are disjoint and of the same size S.

For each such VNE problem we construct the asso-
ciated multipartite graph as described in the previous
section, i.e., the cost of each reduced graph link is the
cost of the min-cost path between the corresponding
nodes in the physical network. We then solve the IP
problem (9)-(11) and its LP-relaxation using CPLEX and
apply our heuristic algorithm to round the LP-relaxation
solution and locally improve it.

Fig. 5. Average and maximum percent optimality gap between the
exact optimal and the solution provided by the heuristic algorithm in
case the multipartite link costs are calculated from the min-cost paths
in a physical network.

Fig. 5 shows the average and maximum optimality
gap between the IP and the heuristic solution over 100
experiments for each value of V. The parameters used for
making this plot are as follows: V ∈ {10, 20, . . . , 100}, d
= 5, N = 20×V , p = 0.1, S = 10, [dmin, dmax]=[2,10],
[cmin, cmax]=[4,400]. It can be seen that the achieved
optimality gaps are surprisingly low for an NP-hard
problem. To discover the reason for this, we repeated the
above experiment with the substantial difference that the
bipartite graph costs are not calculated as min-path costs
on a physical network but are drawn independently from
a uniform distribution in [Cmin, Cmax].

Fig. 6 shows the average and maximum optimality gap
between the IP and the heuristic solution over 100 exper-
iments for each value of V ∈ {10, 20, . . . , 80}, in this
case. The parameters for this experiment are the same as

before except that [Cmin, Cmax]=[4,400]. Obviously the
optimality gaps are much larger than before. This shows
that the reason for getting such low optimality gaps in
the previous experiment is that the resulting costs C
when generated from the physical network graph follow
a much narrower distribution which results in easier IP
problems. Indeed, the histogram of costs C for a single
experiment with V =80 is shown in Fig. 7.

Fig. 6. Average and maximum percent optimality gap between the
exact optimal and the solution provided by the heuristic algorithm when
the multipartite link costs are independently drawn from a uniform
distribution.

Fig. 7. Histogram of multipartite graph link costs calculated as the
min-cost paths in a physical network for a random experiment (V =80).

V. CONCLUSION

We have shown that the variant VNE-SF of the
virtual network embedding problem is NP-hard using
a reduction from the 3-SAT problem. This shows that
the original VNE-UF problem subsumes two different
combinatorial structures, one due to integral routing and
one due to integral placement of functions. Fortunately,
in VNE-UF and VNE-SF where capacity constraints are
relaxed, our heuristic algorithm seems to provide very
good performance. Note that this algorithm can be used
as a basis to solve VNE problems with tight capacity
constraints using Lagrangian relaxation methods.

REFERENCES

[1] B. Addis, D. Belabed, M. Bouet, and S. Secci. Virtual network
functions placement and routing optimization. In 4th IEEE In-

ternational Conference on Cloud Networking (CloudNet), pages
171–177, Oct 2015.

[2] D. Bhamare, R. Jain, M. Samaka, and A. Erbad. A survey on
service function chaining. J. Netw. Comput. Appl., pages 138–
155, 2016.

[3] M. Chowdhury, F. Samuel, and R. Boutaba. Polyvine: policy-
based virtual network embedding across multiple domains. In 2nd
ACM SIGCOMM workshop on Virtualized infrastructure systems
and architectures, pages 49–56. ACM, 2010.

[4] Cloud Native Computing Foundation (CNCF). Charter document.
https://www.cncf.io/about/charter.

[5] S. A. Cook. The complexity of theorem-proving procedures.
In 3rd annual ACM symposium on Theory of computing, pages
151–158, 1971.

[6] G. Even, M. Medina, and B. Patt-Shamir. On-line path com-
putation and function placement in SDNs. In International
Symposium on Stabilization, Safety, and Security of Distributed
Systems, pages 131–147. Springer, 2016.

[7] G. Even, M. Rost, and S. Schmid. An approximation algorithm
for path computation and function placement in sdns. In Interna-
tional Colloquium on Structural Information and Communication
Complexity, pages 374–390. Springer, 2016.

[8] S. Even, A. Itai, and A. Shamir. On the complexity of time table
and multi-commodity flow problems. In 16th Annual Symposium
on Foundations of Computer Science (SFCS 1975), pages 184–
193, Oct 1975.

[9] H. Feng, J. Llorca, A. Tulino, D. Raz, and A. Molisch. Approx-
imation algorithms for the NFV service distribution problem. In
IEEE INFOCOM, 2017.

[10] A. Fischer, J. F. Botero, M. T. Beck, H. de Meer, and X. Hes-
selbach. Virtual network embedding: A survey. IEEE Commu-
nications Surveys Tutorials, pages 1888–1906, 2013.

[11] M. Gao, B. Addis, M. Bouet, and S. Secci. Optimal orchestration
of virtual network functions. Computer Networks, 142:108 – 127,
2018.

[12] A. Garcia-Saavedra, X. Costa-Perez, D. J. Leith, and G. Iosifidis.
FluidRAN : Optimized vRAN / MEC orchestration. In IEEE
INFOCOM, 2018.

[13] A. Gupta, M. F. Habib, P. Chowdhury, M. Tornatore, and
B. Mukherjee. Joint virtual network function placement and
routing of traffic in operator networks. In NetSoft, 2015.

[14] J. Kleinberg. Approximation algorithms for disjoint paths prob-
lems. PhD thesis, Dept. of EECS, MIT, 1996.

[15] Kubernetes Project. Reference documentation.
https://kubernetes.io/ docs/reference/.

[16] M. Leconte, G. Paschos, P. Mertikopoulos, and U. Kozat. A
resource allocation framework for network slicing. In IEEE
INFOCOM, 2018.

[17] A. Maeder, M. Lalam, A. D. Domenico, E. Pateromichelakis,
D. Wubben, J. Bartelt, R. Fritzsche, and P. Rost. Towards a
flexible functional split for cloud-RAN networks. EuCNC, 2014.

[18] M. Mechtri, C. Ghribi, and D. Zeghlache. A scalable algorithm
for the placement of service function chains. IEEE Trans. on
Network and Service Mgmt., pages 533–546, 2016.

[19] M. R. Rahman and R. Boutaba. SVNE: Survivable virtual
network embedding algorithms for network virtualization. IEEE
Trans. on Network and Service Mgmt., pages 105–118, 2013.

[20] M. Rost and S. Schmid. NP–completeness and inapproxima-
bility of the virtual network embedding problem and its variants.
Technical report, arXiv:1801.03162, 2018.

[21] S. Vassilaras, L. Gkatzikis, N. Liakopoulos, I. Stiakogiannakis,
M. Qi, L. Shi, L. Liu, M. Debbah, and G. Paschos. The
algorithmic aspects of network slicing. IEEE Comm. Mag., 2017.

[22] P. Vyavahare, N. Limaye, and D. Manjunath. Optimal embedding
of functions for in-network computation: Complexity analysis
and algorithms. IEEE/ACM Transactions on Networking, 2016.

[23] T. Wang and M. Hamdi. Presto: Towards efficient online virtual
network embedding in virtualized cloud data centers. Computer
Networks, 106:196–208, 2016.

[24] M. Yu, Y. Yi, J. Rexford, and M. Chiang. Rethinking virtual
network embedding: substrate support for path splitting and
migration. ACM SIGCOMM Computer Communication Review,
38(2):17–29, 2008.

