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Abstract. We analyse the cover time of a random walk on a random
graph of a given degree sequence. Weights are assigned to the edges of
the graph using a certain type of scheme that uses only local degree
knowledge. This biases the transitions of the walk towards lower degree
vertices. We demonstrate that, with high probability, the cover time is
at most (1 + o(1)) d−1

d−2
8n logn, where d is the minimum degree. This is

in contrast to the precise cover time of (1 + o(1)) d−1
d−2

θ
d
n logn (with high

probability) given in [1] for a simple (i.e., unbiased) random walk on the
same graph model. Here θ is the average degree and since the ratio θ/d
can be arbitrarily large, or go to infinity with n, we see that the scheme
can give an unbounded speed up for sparse graphs.
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1 Introduction

A simple random walk Wu = Wu(t), t = 0, 1, . . . on a graph G starting from a
vertex u is a sequence of movements from one vertex to another where at each
step an edge is chosen uniformly at random from the set of edges incident on
the current vertex, and then transitioned to next vertex. Various quantities of
interest related to the behaviour of the walk can be studied. For example, the
hitting time H[u, v] of v is the expected number of steps untilWu visits v for the
first time. That is, H[u, v] = E[min{t ∈ N0 : Wu(t) = v}] (note, by definition,
H[u, u] = 0). The maximum hitting time is maxu,v H[u, v].

Another quantity of interest, and the primary focus of this paper, is the cover
time COV[G]: denoting by COVu[G] the expected time it takes Wu to visit
every vertex, COV[G] = maxu COVu[G].
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For simple random walks, asymptotically tight bounds for cover time were given
by [6] and [7]:

(1 + o(1))n log n ≤ COV[G] ≤ (1 + o(1))
4

27
n3,

and these lower and upper bounds are met by the complete graph and the lollipop
graph respectively.

It is also natural to define random walks on a weighted graph G = (V,E,w),
where w is a function mapping edges to strictly positive values w : E → R+. A
weighted random walk on a vertex u transitions an edge (u, v) with probability
w(u, v)/w(u). Simple random walks are a special case where w is a constant
function, and we may refer to them as unweighted walks.

The study of random walks on general weighted graphs is less developed than the
special case of unweighted graphs, and it is not difficult to formulate many open
questions on their behaviour. In particular, what bounds exist for hitting times
and cover time? This was addressed in part by [8] and [9]. The investigation
is framed as follows. For a graph G, let P(G) denote the set of all transition
probability matrices for G, that is, stochastic matrices that respect the graph
structure, i.e. if P ∈ P(G) is a transition matrix on G, we have Pu,v 6= 0 if and
only if (u, v) ∈ E.

For P ∈ P(G), let HG(P ) denote the maximum hitting time in G with transition
matrix P , and CG(P ) similarly for cover time. Let

HG = inf
P∈P(G)

HG(P ) and CG = inf
P∈P(G)

CG(P ).

Note that if for a graph G one knows a spanning tree TG, a transition matrix
P can be constructed that gives a simple random walk on TG, and ignores all
other edges of G. By a “twice round the spanning tree” argument of the type
employed in [3], this implies a O(n2) upper bound on HG and CG.

In [9], it is shown that for a path graph Pn, any transition matrix will have
Ω(n2) maximum hitting time (and therefore, cover time). This, in conjunction
with the spanning tree argument, implies Θ(n2) for both HG and CG.

One can also ask the question about the minimum local topological information
on the graph G that is always sufficient to construct a transition matrix that
‘achieves’ this upper bound for both HG and CG. Our goal is to devise a par-
ticular weighting scheme that gives O(n2) maximum hitting time for any graph.
In [9], the transition probability of edge e = (u, v) is defined as follows:

Pu,v =


1/
√
d(v)∑

w∈N(u) 1/
√
d(w)

if v ∈ N(u)

0 otherwise

where d(v) is the degree of v and N(v) is the neighbour set of v.



Speeding Up Cover Time of Sparse Graphs Using Local Knowledge 3

We will refer to this as the Ikeda scheme. It results in an O(n2 log n) upper
bound on the cover time for any connected n-vertex graph G. The rationale
behind this scheme is that, at a high degree vertex, the biased walk transition
favours low degree neighbours, speeding up their exploration and addressing the
shortcoming of simple random walks for which low degree nodes are hard to
reach.

In the algorithmic context of graph exploration, simple random walks are gen-
erally considered to have the benefit of not requiring information beyond what
is needed to choose the next edge uar. Generally, this implies that a token mak-
ing the walk can be assumed to know the degree of the vertex it is currently
on, but no more information about the structure of the graph. In the Ikeda
scheme, information required in addition to the vertex degree, is the degrees of
neighbouring vertices.

Whilst the speed up given by the Ikeda scheme is clear for graphs such as the
lollipop, which has a cover time ofΘ(n3), it is not clear how much of an advantage
it gives over the simple random walk for sparse graphs. Clearly for regular graphs
there can be no difference, but what of graphs that have some variation in vertex
degree but are still sparse and perhaps even fairly homogeneous? The main aim
of this paper is to answer this question for a different local weighting scheme:
for G = (V,E), assign each edge (u, v) weight w(u, v) = 1/min{d(u), d(v)}
(equivalently, each edge is assigned resistance r(u, v) = min{d(u), d(v)}). This
weighting scheme defines the following transition matrix of a weighted random
walk:

Pu,v =

{
w(u,v)∑

w∈N(u) w(u,w) if v ∈ N(u)

0 otherwise
(1)

where w(u, v) = 1/min{d(u), d(v)}.

We may, as a matter of convenience, say that w(u, v) = 0 if (u, v) /∈ E in
calculations of transition probabilities. We call this scheme the minimum degree
(or min-deg) scheme. It uses limited local graph information as the Ikeda scheme
and provides similar general bounds on the hitting time and cover time of O(n2)
and O(n2 log n) respectively. Additionally, however, we show that it can provided
an arbitrarily large or unbounded speed up for sparse graphs.

Notation and terminology, structure of the paper

For a graph G = (V,E), let n = |V | and m = |E|. Asymptotic quantities are
with respect to n. A sequence of events (En)n on probability spaces indexed by
the number of vertices n occurs with high probability (whp) if Pr(En) → 1 as
n→∞.

For a vertex v ∈ V , dv = d(v) is the degree of v and N(v) is the set of v’s
neighbours. For a random walk Wu on a (weighted or unweighted) graph G, the
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stationary distribution, should it exist, is denoted by π, and πv = π(v) is the
stationary probability for vertex v.

We use the phrases “weighted random walk on a graph G” and “random walk
on a weighted graph G” interchangeably.

We shall introduce further notation as needed.

In the next section, we give general bounds for the min-deg scheme. In section
3, we begin by describing a class of sparse graphs of a given degree sequence. We
give the constraints on the degree sequence and compare to established results
for simple walks. We then analyse the walk weighted with the min-deg scheme
on the same model of graph.

Due to space constraints, proofs not presented in the main text are given in the
appendix.

2 General bounds for the minimum degree weighting
scheme

In this section, we prove an upper bound of O(n2) and O(n2 log n) on the hitting
time and cover time, respectively, for the minimum degree scheme with transition
matrix (1).

The proof of O(n2) hitting time in [9] applies the following, generally useful
lemma (proof omitted).

Lemma 1. For any connected graph G and any pair of vertices u, v ∈ V , let
ρ = (x0, x1, . . . , x`) where x0 = u and x` = v be a shortest path between u and
v. Then ∑̀

i=0

d(xi) ≤ 3n

where d(x) is the degree of vertex x.

In addition, we have that

Lemma 2. For the minimum degree scheme, let w(G) =
∑
u∈V

∑
v∈N(u) w(u, v).

Then
n ≤ w(G) ≤ 2n. (2)

Consequently,

Theorem 1. For a graph G = (V,E,w) under the min-deg weighting scheme,
H[u, v] ≤ 6n2 for any pair of vertices u, v ∈ V .

By Matthews’ technique [14], we obtain
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Corollary 1. COV[G] = O(n2 log n).

The authors of [9] conjecture that their weighting scheme in fact gives an O(n2)
upper bound on cover time. To our knowledge, no weighting scheme has been
shown to meet an O(n2) bound on all simple, connected and undirected graphs.
We believe that our weighting scheme provides a similar bound and conjecture
so:

Conjecture 1. The minimum degree weighting scheme has O(n2) cover time on
all graphs G.

3 Random graphs of a given degree sequence

From here on we study a sequence of random graphs on n vertices, where n goes
to infinity.

Define G(dn) to be the set of connected simple graphs on the vertex set V = [n]

and with degree sequence dn = (d
(n)
1 , d

(n)
2 , . . . , d

(n)
n ) where d

(n)
i = d(i) is the

degree of vertex i ∈ V . Clearly, restrictions on degree sequences are required
in order for the model to make sense. An obvious one is that the sum of the
degrees in the sequence cannot be odd. Even then, not all degree sequences are
graphical and not all graphical sequences can produce simple graphs. Take for
example the two vertices v and w where dv = 3 and dw = 1. In order to study
this model, we restrict the degree sequences to those which are nice and graphs
which have nice degree sequences are termed the same. The precise definition is
given below.

Let

ω = ωn = log log log n.

For a degree sequence dn, Let d = d(dn) = d
(n)
1 be the minimum, θ = θ(dn)

the average and ∆ = ∆(dn) = d
(n)
n the maximum of the entries in dn. Let

nd =
∑n
i=1 1{d(i)=d}, that is, the total number of entries in dn with value d. We

emphasise that d can grow with n – it need not be a fixed integer.

A sequence (dn)n of degree sequences is nice if the following conditions are
satisfied: For each dn,

(i) nθ is even.

(ii) d ≥ 3.

(iii) ∆ ≤ ω1/4.

Furthermore,

(iv) for some constant α ∈ (0, 1], nd/n→ α as n→∞.
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Note that that this is a more restrictive definition of nice than in [1], and that
a sequence of degree sequences that is nice by this definition is also nice per the
definition given in [1].

Condition (ii) ensures the graph is connected (whp). Condition (iii) is required
for our proofs in subsequent lemmas, and it has the effect of rendering redundant
other conditions for nice sequences listed in [1].

To understand condition (iv) consider that without it, the sequence of degree
sequences could result in sequences of random graphs that have wildly different
cover times. As such we may not have convergence. The condition itself is fairly
liberal – we do not require the that the degree sequence as a whole converges to
a fixed distribution, nor even that d converges to some fixed constant.

Although this model is typically framed as a random graph, randomness here is
superfluous. We assume that the graph G that the protocol acts upon is from the
typical subset G′(dn) of the set G(dn) of simple graphs with nice degree sequence
dn. As long as G has the typical properties, our analysis holds. The fact that
the typical subset is almost the same size as the general set when n is large is
demonstrated via the configuration model. See [1] for a detailed explanation.

Examples of nice sequences/graphs are: Any d-regular graph where d ≤ ω1/4; a
graph where a positive fraction of the vertices have bounded degree at least 3
and the rest have unbounded degree at most ω1/4; a truncated power-law graph
with with minimal degree at least 3 and maximal degree at most ω1/4.

In [1], the authors prove the following asymptotic result on the cover time of
simple random walks on nice graphs:

Theorem 2 ([1]). Let (dn)n be nice and let G be chosen uar from G(dn). Then
whp,

COV[G] = (1 + o(1))
d− 1

d− 2

θ

d
n log n, (3)

where d is the effective minimum degree and θ is the average degree.

The effective minimum degree is the smallest integer d which satisfies condition
(iv) above. It coincides with the minimum degree in our context.

We prove the following:

Theorem 3. Let (dn)n be nice and let G be chosen uar from G(dn). Weight
the edges of G with the min-deg weighting scheme, that is, for an edge (u, v),
assign it weight w(u, v) = 1/min{d(u), d(v)}. Denote the resulting graph Gw.
Then whp,

COV[Gw] ≤ (1 + o(1))
d− 1

d− 2
8n log n. (4)

where d is the minimum degree.
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Note that the assumptions on the degree sequence allow for the ratio θ/d to be
unbounded. As such, the ratio of the min-deg cover time to the simple cover
time, that is, the speed up, can be unbounded.

Typical graphs Our analysis requires that graphs G taken from G(dn) have
certain structural properties. The subset of graphs G′(dn) having these properties
form a large proportion of G(dn), in fact, |G′(dn)|/|G(dn)| = 1 − n−Ω(1) when
(dn)n is nice ([1]). We term graphs in G′(dn) for (dn)n nice as typical, so a graph
G drawn uar from G(dn) will be typical whp.

We need not list all the properties of typical graphs, but we shall use their
useful consequences, amongst which are that they are connected, simple, and
non-bipartite.

4 Convergence to the stationary distribution

In this section we begin with a brief overview of results on Markov chains and
random walks on (weighted) graphs. For details, we refer the reader to, e.g., [2],
[11] and [12].

Since a weighted random walk on G = (V,E,w) is a reversible Markov chain,
we can apply standard results for these types of processes. For example, if G
is non-bipartite, then the walk converges to a stationary distribution π, where
πu = π(u) = w(u)/w(G).

Furthermore, the rate of convergence is related to the the absolute spectral gap -
the difference between the largest eigenvalue, 1 and second largest (in magnitude)
eigenvalue λ∗ of the probability transition matrix of the walk. Specifically, if

P
(t)
u (v) = Pr(Wu(t) = v) then

|P (t)
u (v)− πv| ≤

√
πv
πu

λt∗. (5)

If the walk is made lazy, that is, if we append a looping probability of 1/2 and
scale all other transition probabilities accordingly, then the largest eigenvalue
remains 1 and second eigenvalue λ2 is guaranteed to be the second largest in
absolute terms. We can then apply the following result, proved independently in
[10] and [13]:

Theorem 4 ([10], [13]). Let λ2 be the second largest eigenvalue of a reversible,
aperiodic transition matrix P. Then

Φ2

2
≤ 1− λ2 ≤ 2Φ (6)

where Φ is the conductance.
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Corollary 2.

|P (t)
u (v)− πv| ≤

√
πv
πu

(
1− Φ2

2

)t
. (7)

Conductance is defined as follows:

Definition 1 (Conductance). LetM be an irreducible, aperiodic Markov chain
on some state space Ω. Let the stationary distribution of M be π with π(x) de-
noting the stationary probability of x ∈ Ω. Let P be the transition matrix for
M. For x, y ∈ Ω let Q(x, y) = π(x)Px,y and for sets A,B ⊆ Ω, let Q(A,B) =∑
x∈A,y∈B Q(x, y). The conductance of M is the quantity

Φ = Φ(M) = min
S⊆Ω

π(S)≤1/2

Q(S, S)

π(S)
(8)

where π(S) =
∑
x∈S π(x), and S = Ω \ S.

For a graph G weighted by function w, we write Φ(Gw) for the conductance of
the weighted random walk on G.

Making the walk lazy halves the conductance and doubles the important quantity
Rv, which we shall define and elaborate upon below. It also doubles the cover
time.

In fact, we do not need to maintain a lazy walk all the time, but will do so only
for the duration of the mixing time T which we define as follows:

T = ω2 log n. (9)

Informally, the mixing time is how long it takes for the distribution of a Markov
chain to be close to the stationary distribution. After the mixing time, we can
revert to the non-lazy walk. It will be seen that the lazy steps during the mixing
time will have negligible impact on the asymptotic cover time, since, being poly-
logarithmic, it is short compared to other quantities such as hitting time which
are linear in n and dominate over it.

More precisely, we show below that for most nice graphs, for any t ≥ T

|P (t)
u (x)− πv| ≤

1

n3
, (10)

for any vertices u and v in G. This is a corollary of the following lemma:

Lemma 3. Let (dn)n be nice and let G be chosen uar from G(dn). Let Gw be
G weighted with the min-deg weighting scheme. Then Φ(Gw) ≥ 1/(100∆) whp,
where ∆ is the maximum degree.
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We will consider the condition Φ(Gw) ≥ 1/(100∆) to be one of the typical
properties.

Corollary 3. For a random walk on a weighted typical graph G, we have for
t ≥ T ,

|P (t)
u (v)− πv| ≤ n−3,

where P
(t)
u (v) is the probability that the minimum degree random walk is at node

v at time t, given that it started at node u.

5 First visit lemma

The hitting time from the stationary distribution, H[π, v] =
∑
u∈V πuH[u, v],

can be expressed as H[π, v] = Zv,v/πv, where

Zv,v =

∞∑
t=0

(P (t)
v (v)− πw), (11)

see e.g. [2]. For a (weighted or unweighted) random walk Wv, starting from v
define

Rv(T ) =

T−1∑
t=0

P (t)
v (v). (12)

Thus Rv is the expected number of returns made by Wv to v during the mixing

time, in the graph G. We note that Rv ≥ 1, as P
(0)
v (v) = 1.

Let D(t) = maxu,x |P (t)
u (x)−πx|. As πx ≥ 1/n2 for any vertex of a simple graph,

(10) implies that D(t) ≤ πx for all x ∈ V if t ≥ T .

Lemma 4. For a random walk Wu on a graph G (weighted or unweighted),
suppose T satisfies (10). Let vertex v ∈ V be such that Tπv = o(1), and πv < 1/2,
then

H[π, v] = (1 + o(1))
Rv(T )

πv
. (13)

Let At(v) denote the event that Wu does not visit v in steps 0, ..., t. We next
derive a crude upper bound for Pr(At(v)) in terms of H[π, v].

Lemma 5. For a random walk Wu on a graph G (weighted or unweighted),
suppose T satisfies (10), then

Pr(At(v)) ≤ exp

(
−(1− o(1))bt/τvc

2

)
,

where τv = T + 2H[π, v].
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In order to apply Lemma 5, we shall need to show that the conditions of Lemma
4 are satisfied, and we will need to bound Rv. We start off by bounding the
stationary distribution:

Lemma 6. For a vertex u,

1

2n
≤ πu ≤

d(u)

n
. (14)

Corollary 4. Tπu = o(1).

We see that for nice degree sequences, the conditions of Lemma 4 are satisfied.
It remains to bound Rv, the expected number of returns in the mixing time.

5.1 The number of returns in the mixing time

Let Γv denote the subgraph of G induced by all vertices within distance ω of
v. From [1], and in conjunction with the restriction ∆ ≤ ω1/4, we have the
following, which we shall consider to be a typical property:

Proposition 1 ([1]). With high probability, Γv is either a tree or has a unique
cycle.

Let Γ ◦v be the set of vertices in Γv that are at distance ω from v.

Lemma 7. Suppose Gw is typical and weighted with the min-degree scheme. Let
W∗v denote the (weighted) walk on Γv starting at v with Γ ◦v made into absorbing
states. Assume further that there are no cycles in Γ ◦v . Let R∗v =

∑∞
t=0 r

∗
t where

r∗t is the probability that W∗v is at vertex v at time t. Then

Rv = R∗v +O(
√
ωe−Ω(

√
ω)).

We apply this in the proof of the following lemma:

Lemma 8. Suppose ∆ ≤ ω1/4, Gw is typical and weighted with the min-degree
scheme. Let v be a vertex in Gw.

(a) If Γv is a tree, Rv ≤ d−1
d−2 +O(

√
ωe−Ω(

√
ω)).

(b) Rv ≤ d
d−2

d−1
d−2 +O(

√
ωe−Ω(

√
ω)) ≤ 6 +O(

√
ωe−Ω(

√
ω)).

5.2 The number of vertices not locally tree-like

We wish to bound the number of vertices v that are not locally tree-like, i.e., for
which Γv has a cycle.

Lemma 9. Suppose G ∈ G(d) is drawn uar. With probability at least 1−n−Ω(1),
the number of vertices not locally tree-like is at most n1/10 .
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6 Upper bound on the cover time

Let the random variable cu be the time taken by the (weighted) random walk
Wu starting from vertex u to visit every vertex of a connected (weighted) graph
G. Let Ut be the number of vertices of G which have not been visited by Wu by
step t. We note the following:

COVu[G] = E[cu] =
∑
t>0

Pr(cu ≥ t), (15)

Pr(cu ≥ t) = Pr(cu > t− 1) = Pr(Ut−1 > 0) ≤ min{1,E[Ut−1]}. (16)

Recall that As(v) is the event that vertex v has not been visited by time s. It
follows from (15), (16) that

COVu[G] ≤ t+ 1 +
∑
s≥t

E[Us] = t+ 1 +
∑
v

∑
s≥t

Pr(As(v)). (17)

We use Lemmas 4 and 5, which hold for weighted random walks (see Chapter
2, General Markov Chains, in [2] for justification of (11) and the inequality
D(s + t) ≤ 2D(s)D(t). All other expressions in the proofs hold for weighted
random walks). Thus,

Pr(At(v)) ≤ exp

(
−(1− o(1))bt/τvc

2

)
,

where τv = T + 2H[π, v] and H[π, v] = (1 + o(1))Rv/πv.

Hence, for a given v,∑
s≥t

Pr(As(v)) ≤
∑
s≥t

exp

(
−(1− o(1))bs/τvc

2

)

≤ τv
∑

s≥bt/τvc

exp

(
−(1− o(1))s

2

)

≤ 3τv exp

(
−(1− o(1))bt/τvc

2

)
= 3τv exp

(
−(1− o(1))

2

⌊
tπv

Tπv + (1 + o(1))2Rv

⌋)
.

Since Tπv = o(1) and πv ≥ 1/2n from (14), we get∑
s≥t

Pr(As(v)) ≤ 3τv exp

(
−(1− o(1))

2

⌊
t

(1 + o(1))4nRv

⌋)

Let t = t∗ = (1 + ε)8d−1d−2n log n where ε→ 0 sufficiently slowly. Then∑
s≥t

Pr(As(v)) ≤ 3τv exp

(
−(1 +Θ(ε))

d− 1

d− 2

log n

Rv

)
(18)
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We partition the double sum
∑
v

∑
s≥t Pr(As(v)) from (17) into∑

v∈VA

∑
s≥t

Pr(As(v)) +
∑
v∈VB

∑
s≥t

Pr(As(v))

where VA are locally tree-like and VB are not.

If v is locally tree-like, then using Theorem 8 (a), the RHS of (18) is bounded
by

3τvn
−(1+Θ(ε)) = 3(T + 2(1 + o(1))Rv/πv)n

−(1+Θ(ε))

≤ (1 + o(1))12nRvn
−(1+Θ(ε))

= O(1)n−Θ(ε).

Thus, ∑
v∈VA

∑
s≥t

Pr(As(v)) ≤ O(1)n1−Θ(ε) = o(t). (19)

For any v (i.e., including those not locally tree-like), (18) is bounded by

3τvn
−(1+Θ(ε)) d−1

6(d−2) ≤ O(1)n1−(1+Θ(ε)) d−1
. 6(d−2) (20)

Using Lemma 9 to sum the bound (20) over all non locally tree-like vertices, we
get ∑

v∈VB

∑
s≥t

Pr(As(v)) ≤ O(1)n
1
10+1−(1+Θ(ε)) d−1

6(d−2) = O(n
1
2 ) = o(t). (21)

Hence, combining (17), (19) and (21) for t = t∗, Theorem 3 follows.

Compare this with (3), we see that the speed up,

S =
COV[G]

COV[Gw]
= Ω(θ),

Therefore S → ∞ as n → ∞ if θ → ∞ as n → ∞. That is, we can have an
unbounded speed up.

We conjecture that the following tighter bound holds:

Conjecture 2. Equation (4) can be replaced by

COV[Gw] ≤ (1 + o(1))
d− 1

d− 2
n log n.
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7 Appendix

Proof (Proof of Lemma 2). First note that, for (u, v) ∈ E, we have

w(u, v) ≤ 1

d(u)
+

1

d(v)
≤ 2w(u, v)

In addition, we have
∑
u∈V

∑
v∈N(u)(1/d(u)) = n. Hence, for undirected graphs,∑

u∈V

∑
v∈N(u)

(
1

d(u)
+

1

d(v)

)
= 2n
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which concludes the proof.

Proof (Proof of Theorem 1).

A link between electrical network theory and random walks is made via the
commute time COM[u, v] = H[u, v] + H[v, u] (note that, generally, H[u, v] 6=
H[v, u]). For a graph G = (V,E,w), define w(G) =

∑
u∈V w(u) = 2

∑
e∈E w(e).

From [4] we have the following lemma:

Lemma 10 ([4]). Let G = (V,E,w). For any pair of vertices u, v,∈ V ,

COM[u, v] = w(G)R(u, v),

where R(u, v) is the effective resistance between vertices u and v.

We refer the reader to .e.g., [5] for an explanation of effective resistance. For our
purposes, it suffices to say that the effective resistance between vertices u and
v is at most the resistance of an edge between them. That is, R(u, v) ≤ r(u, v),
where r(u, v) = 1/w(u, v).

Let ρ = (x0, x1, . . . , x`) where x0 = u and x` = v be a shortest path between u
and v.

H[u, v] ≤
`−1∑
i=0

H[xi, xi+1]

≤
`−1∑
i=0

COM[xi, xi+1] (22)

= w(G)

`−1∑
i=0

R(xi, xi+1). (23)

Since R(x, y) ≤ r(x, y) = min{d(x), d(y)}, we have

`−1∑
i=0

R(xi, xi+1) ≤
`−1∑
i=0

min{d(xi), d(xi+1)} ≤
`−1∑
i=0

d(xi) ≤ 3n,

where the last inequality follows by Lemma 1. By (2) we have w(G) ≤ 2n, and
the theorem follows.

Proof (Proof of Lemma 3). Since w(u) =
∑
v∈V w(u, v) (where w(u, v) = 0 if

(u, v) /∈ E) and π(u) = w(u)
w(G) and Pu,v = w(u,v)

w(u) we have Q(u, v) = π(u)Pu,v =
w(u,v)
w(Gw) and

Q(S, S′) =
1

w(Gw)

∑
u∈S,v∈S′

w(u, v).
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Since

π(S) =
∑
u∈S

π(u) =
1

w(Gw)

∑
u∈S

w(u),

we have

Φ(Gw) = min
π(S)≤1/2

∑
u∈S,v∈S′ w(u, v)∑

u∈S w(u)
. (24)

In [1, Lemma 7], it is shown that the conductance of the simple random walk is
bounded below by ε = 1/100, i.e., for a graph G picked uar from G(dn), subject
to (dn)n being nice, whp

E(S) =
|E(S : S)|
d(S)

≥ ε (25)

for any set S such that π(S) ≤ 1/2, where E(S : S) is the set of edges with one
end in S and the other in S, and d(S) =

∑
v∈S d(v). This implied that for an

unweighted (or uniformly weighted) graph, Φ(G) ≥ ε, equation (24) becomes

Φ(G) = min
π(S)≤1/2

|E(S : S)|
d(S)

.

If ∆ is the maximum degree in d, then w(e) ≥ 1/∆ for any edge e. Therefore,
Φ(Gw) ≥ Φ(G)/∆ ≥ 1/(100∆).

Proof (Proof of Corollary 3). Combining Lemma 3 and (5) for a lazy walk, we
have

|P (t)
u (x)−πx| ≤

(
πx
πu

)1/2(
1− Φ2

2

)t
≤ ∆1/2

(
1− 1

K∆2

)T
≤ ω1/8 exp

(
−ω

2 log n

Kω1/2

)
≤ n−3

where K is a constant.

Proof (Proof of Lemma 4). Let D(t) = maxu,x |P (t)
u (x)−πx|. It follows from e.g.

[2] that D(s + t) ≤ 2D(s)D(t). Hence, since maxu,x |P (T )
u (x) − πx| ≤ πv, then

for each k ≥ 1, maxu,x |P (kT )
u (x)− πx| ≤ (2πv)

k. Thus

Zv,v =

∞∑
t=0

(P (t)
v (v)− πv)

≤
∑
t<T

(P (t)
v (v)− πv) + T

∑
k≥1

(2πv)
k

= Rv(T )− Tπv +O(Tπv)

= Rv(T )(1 + o(1)).

The last inequality follows because Rv(T ) ≥ 1.
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Proof (Proof of Lemma 5). Let ρ = ρ(G,T, u) be the distribution of Wu on G
after T , then

H[ρ, v] = (1 + o(1))H[π, v].

Indeed,

H[ρ, v] =
∑
w∈V

ρwH[w, v]

= (1 + o(1))
∑
w∈V

πwH[w, v]

= (1 + o(1))H[π, v]. (26)

Let hρ(v) be the time to hit v starting from ρ. Then E[hρ(v)] = H[ρ, v] so by
Markov’s inequality and using (26),

Pr(hρ(v) ≥ 2H[π, v]) ≤ (1 + o(1))

2
.

By restarting the process at Wu(0) = u,Wu(τv),Wu(2τv), ...,Wu(bt/τvcτv) we
obtain

Pr(At(v)) ≤
(

(1 + o(1))

2

)bt/τvc
.

Proof (Proof of Lemma 6). πu = w(u)
w(G) . Recalling N(u) is the neighbour set of a

vertex u, use ∑
v∈N(u)

w(u, v) ≥
∑

v∈N(u)

1

d(u)
= 1

and ∑
v∈N(u)

w(u, v) ≤
∑

v∈N(u)

1 = d(u)

with (2).

Proof (Proof of Lemma 7). Observe,

Rv −R∗v =

(
ω∑
t=0

rt − r∗t

)
+

(
T∑

t=ω+1

rt − r∗t

)
−

∞∑
t=T+1

r∗t .

Case t ≤ ω. For t ≤ ω, r∗t = rt. Thus we can write(
ω∑
t=0

rt − r∗t

)
= 0. (27)
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Case ω + 1 ≤ t ≤ T . We use (7) with u = v. We have z = (1 − Φ(Gw)2/2) <
(1 − 1/K

√
ω) for some constant K. Observe Tπv = O(1/nc) for some constant

c > 0, so Tπv = o(
√
ωe−

√
ω). Hence,

T∑
t=ω+1

|rt − r∗t | =
T∑

t=ω+1

rt ≤
T∑

t=ω+1

(πv + zt) ≤ Tπv +
zω

1− z
= O(

√
ωe−Ω(

√
ω)).

(28)

Case t ≥ T + 1. It remains to estimate
∑∞
t=T+1 r

∗
t .

Let x ∈ Γv. Let p be the probability of movement away from v and q the
probability toward it. Observe the min-degree weighting scheme gives

p

q
≥ (dx − 1)1/dx

1/d
≥ dd− 1

d
= d− 1.

Hence, the probability of moving away from v for the weighted walk is at least
the probability of the same for an unweighted walk on a d-regular tree. Let σt
be the probability that such a walk has not been absorbed at time t, where the
abosrbing vertices are those at distance ω from the root. Then r∗t ≤ σt, and so

∞∑
t=T+1

r∗t ≤
∞∑

t=T+1

σt.

We estimate an upper bound for σt as follows: Consider an unbiased random walk

X
(b)
0 , X

(b)
1 , . . . starting at |b| < a ≤ ω on the finite line (−a,−a+ 1, ..., 0, 1, ..., a),

with absorbing states −a, a. X
(0)
m is the sum of m independent ±1 random vari-

ables. The central limit theorem implies that there exists a constant c > 0 such
that

Pr(X
(0)
ca2 ≥ a or X

(0)
ca2 ≤ −a) ≥ 1− e−1/2.

Now for any t and b with |b| < a, we have

Pr(|X(b)
t | < a) ≤ Pr(|X(0)

t | < a)

which is justified with the following game: We have two walks, A and B coupled
to each other, with A starting at position 0 and B at position b, which, w.l.o.g,
we shall assume is positive. The walk is a simple random walk which comes to
a halt when either of the walks hits an absorbing state (that being, −a or a).
Since they are coupled, B will win iff they drift (a− b) to the right from 0 and
A will win iff they drift −a to the left from 0. Therefore, given the symmetry of
the walk, B has a higher chance of winning.
Thus

Pr(|X(0)
2t | < a) ≤ Pr(|X(0)

t | < a)2,
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since after t steps, the worst case position for the walk to be at is the origin, 0.
Consequently, for any b with |b| < a,

Pr(|X(b)
2ca2 | ≥ a) ≥ 1− e−1. (29)

Hence, for t > 0,

σt = Pr(|X(0)
τ | < a, τ = 0, 1, . . . , t) ≤ e−bt/(2ca

2)c. (30)

Thus
∞∑

t=T+1

σt ≤
∞∑

t=T+1

e−t/(3cω
2) ≤ e−T/(3cω

2)

1− e−1/(3cω2)
= O(ω2/nΩ(1)) = O(

√
ωe−Ω(

√
ω)).

(31)

Proof (Proof of Lemma 8). (a) As per proof of Case t ≥ T + 1 in Lemma 7, we
can bound the number of returns by considering the unweighted walk on a tree
in which all internal vertices, except possibly the root, have degree d. The leaves
of the tree are absorbing states, and we apply Lemma 7.

For a biased random walk on (0, 1, ..., k), starting at vertex 1, with absorbing
states 0, k, and with transition probabilities at vertices (1, . . . , k − 1) of q =
Pr(move left), p = Pr(move right); then

Pr(absorption at k) =
(q/p)− 1

(q/p)k − 1
. (32)

This is the escape probability ρ - the probability that after the particle moves
from v to an adjacent vertex, it reaches an absorbing state without having visited
v again. R∗v = 1 + 1/ρ− 1 = 1/ρ.
We project W∗v onto (0, 1, . . . , ω) with p = d−1

d and q = 1
d giving

R∗v ≤
(

1− 1

(d− 1)ω

)
d− 1

d− 2
=
d− 1

d− 2
−O

(
(d− 1)−ω

)
(33)

and part (a) of the lemma follows.

(b) Since any cycle in Γv is unique, at most two of the edges, (v, u1), (v, u2) out
of v lead to vertices on a cycle. Let bad be the event event of moving from v to
some u ∈ {u1, u2} Then

Pr(bad) ≤ 2/d

2/d+ (dv − 2)(1/dv)
=

2/d

2/d+ 1− 2/dv
≤ 2/d.

Denoting the neighbour set of v by N(v), the probability of moving from v
to some u ∈ N(v) \ {u1, u2} is then at least d−2

d , implying d
d−2 returns to v

in expectation for every transition from v to N(v) \ {u1, u2}. Assuming that a
move from v to u1 or u2 always results in an immediate return, we can bound
Rv ≤ d

d−2 (d−1d−2 +O(
√
ωe−Ω(

√
ω))) ≤ 6 +O(

√
ωe−Ω(

√
ω)).
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Proof (Proof of Lemma 9). Recall θ is the average degree. Letting F(2x) = (2x)!
2xx! ,

it can be shown that for integer x > 0, F(θn−2x)
F(θn) ≤

(
1

θn−2x

)x
.

The expected number of small cycles has upper bound

2ω+1∑
k=3

(
n

k

)
(k − 1)!

2
(∆(∆− 1))k

F(θn− 2k)

F(θn)

≤
2ω+1∑
k=3

nk∆2k

(
1

θn− 2k

)k

≤
2ω+1∑
k=3

∆2k

(
n

θn− 4ω − 2

)k
≤ ∆4(ω+1).

Therefore, the expected number of vertices within distance ω of a cycle is at
most ∆4(ω+1)∆ω = ∆5ω+4. Since ∆ ≤ ω1/4, the lemma follows by Markov’s
inequality.
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