3P17/4P17 COMPUTABILITY 2014-2015 Lecture Handout 1

Alphabets, strings, languages
An alphabet ¥ is a finite set of symbols. E.g., ¥ = {0,1}, ¥ = {a,b,...,z}.

A string o over an alphabet X is a sequence of symbols from Y. E.g., ¢ = gniksjfnd.

The length |o| of a string o is the number of symbols that it is formed of.

Concatenation of strings 01 = abc, 09 = xyz is 0102 = abcxyz

A substring is a string within a string, appearing consecutively, e.g., bbb is a substring of abbbaa
but not a substring of babbaa.

The empty string ¢ is for strings like the number zero in arithmetic: If ¢ is a string, ec = ce = 0o
and |e] = 0.

A language is a set of strings, can be finite or infinite.

Given an alphabet ¥, the star operation gives ¥*, the set of all strings over . E.g., if ¥ = {a, b},
then ¥* = {¢,a,b, aa,bb, ab, ba, aaa,...}.

Turing machines

A Turing machine M is a 7-tuple: M = (Q, %, T, 6, qo, Gacc, Grej) Where @, X, T" are finite sets and

Q@ is the set of states (always includes qo, gacc, Grej)

3} is the input alphabet; it does not include the blank symbol LI, or end-of-tape symbol >
I' is the tape alphabet, where LI, € 1" and ¥ C T,

0 :Q\{qacc, Grej} X I' = @ x I' x {L, R} is the transition function,

qo € @ is the start state,

Qacc € @ is the accept state, and

RO o

drej € @ is the reject state.

A Turing machine has a read/write head and a tape, which is an infinite array of squares/locations,
with a first location, a second location, ...

Each square/location holds exactly one symbol (which may be the blank symbol L).

The left end of the tape is occupied by . It is never replaced by another symbol.

The Turing machine M = (Q, 3, T, 6, qo, Gace, Grej) Performs computations as follows:
-Initially there is an input string w = wyws, ...w, € X* on the n leftmost squares after .
-The rest of the tape is blank (i.e., filled with U).

- The read/write head starts at the first square after the >, i.e., on the first symbol of the input.

3P17/4P17 COMPUTABILITY 2014-2015 Lecture Handout 1
-At each step, M does the following: If the current state is gacc Or grej, then halt. Otherwise, read
the symbol under the head and do the following as per the transition function: replace the symbol
on the square underneath the head, move the head, change state.

-If the read/write head is ever over 1>, it moves right in the next step. It cannot replace > (but can
change state).

At any given step, the triple (current state, current head location, current tape contents) is called
a configuration.

Configuration (' yields configuration C if Cy follows C from the the rules of operation. We have
starting configurations, accepting configurations, rejecting configurations...the latter two
are halting configurations.

A Turing machine can:
e recognise/decide (strings in) languages
e compute functions on strings
Recognising /deciding languages

The collection of strings that cause a Turing machine M to reach an accepting state (accepting
configuration) is called the language of M, or the language recognised by M, and is denoted
L(M).

A language L; is called Turing-recognisable if some Turing machine recognises it, i.e., if there
exists a Turing machine M with L(M) = L;.

Note, if w € L, then M will always halt with accept. If w ¢ L1, then M may halt with reject, or
may loop i.e., go on forever.

A Turing machine that halts (with accept or reject) on every input is called a decider.

A language L is called Turing-decidable, or simply decidable if there is a decider M such that
L(M) = L.

Computing functions on strings
A function f : ¥* — ¥* is called a function on X»-strings
We say that a Turing machine M computes the function f if for every w € X%,
e M halts on input w
e after halting, the tape has f(w) on the leftmost squares of the tape and the rest are blank

A function f is called Turing-computable, or simply computable if there exists some Turing
machine M that computes it.

This captures a broad class of computations, since the strings may be encoded to represent numbers,
graphs, matrices,

