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Time complexity

Let M be a deterministic TM that halts on all inputs, i.e., is a decider.

Recall tM : Σ∗ → N is a function where tM (σ) is the number of steps M takes to halt when given input σ.

The worst-case time complexity of M is the function f : N→ N where

f(n) = max{tM (σ) : σ ∈ Σ∗, |σ| = n}.

Note, this is often shortened to time complexity or just complexity. It is often also referred to as the
running time.

Whichever of these it is called, it always answers the same question: Over all inputs of length n, how long
does the longest computation take?

Note: there are other time complexity questions, such as the average time complexity, or best case time
complexity.

Obviously best-case complexity ≤ average case complexity ≤ worst-case complexity.

We shall be dealing mainly with worst case.

Let t : N→ R+. Define the time complexity class TIME(t(n)) to be the collection of all languages that
are decidable by an O(t(n)) time Turing machine.

Examples

The following TM will decide the language L = {0k1k : k ≥ 0} over alphabet Σ = {0, 1}:

M1

The tape alphabet is Γ = {0, 1, ∗, .,t}. On input σ:

(0) Scan through tape checking if there is a 0 to the right of a 1. If so, reject, if not, return head to location
1, leaving the input tape unchanged.

(1) Scan through tape from location 1 doing the following:

- If a 0 is encountered, replace it with a ∗ go to (2)

- If a 1 is encountered, reject

- If there are no 0’s and no 1’s encountered, then accept.

(2) Continue scanning looking for a 1.

- If a 1 is encountered replace it with a ∗, move head to location 1 and go to (1).

- If no 1 is found, then reject.

Theorem 1. The time complexity of M1 is O(n2).

Proof. (0) takes O(n) time because it only needs to make a single pass through the input, remembering if it
has seen a 1 so that it can reject if it sees a 0 thereafter.

It is executed once. Therefore, it contributes a total O(n) to the time complexity.
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Each iteration of (1) and (2) takes O(n) time, because together they make a single pass through the tape
content, or terminate before reaching the end. Each non-blank square only gets seen at most once in each
iteration, and the tape contents is not changed.

Each of (1) and (2) is executed at most n+1 times. Therefore, they contribute a total O(n2) time complexity.

The total complexity of this algorithm is therefore O(n2) +O(n) = O(n2).

Corollary 2. L ∈ TIME(n2).

In fact, there is a matching lower bound:

Theorem 3. The time complexity of M1 is Ω(n2)

Proof. If the input is of the form 0n/21n/2 for even n, then there will by an iteration of (1)-(2) for each 0,
and in each iteration, it will have to scan through at least n/2 locations. Therefore, it will take time at least
n2/4 = Ω(n2).

Hence, in the worst case over all σ with |σ| = n, tM1
(σ) = Ω(n).

Corollary 4. M1 has time complexity Θ(n2).

Can we do better? Yes, the following algorithm has complexity O(n log n):

M2

The tape alphabet is Γ = {0, 1, ∗, .,t}. On input σ:

(0) Scan through tape checking if there is a 0 to the right of a 1. If so, reject, if not, return head to location
1, leaving the input tape unchanged.

(1) From location 1, scan through the tape checking if the total number of 0s and 1s is zero or odd.

If it is zero, accept.

If it is odd, reject

(2) From location 1, scan through the tape replacing with ∗ every other 0 starting with the first 0.

(3) From location 1, scan through the tape replacing with ∗ every other 1 starting with the first 1.

(4) Go to (1).

Firstly, let’s check that M2 does, in fact, give the right answer:

Theorem 5. M2 decides L.

Proof. If σ = 0k1k for some k ≥ 0, then it will pass (0).

Then if k = 0, it will, rightly, be accepted at (1). If k > 0, then their total will be 2k so will it will pass to
(2) which replaces dk/2e 0s, passing to (3) which crosses off the same number of 1s. It then passes to (4)
which takes it back to (1) and the cycle repeats, always removing at least half the remaining number of 0s
and 1s, leaving the same number of 0s and 1s, after (3). Eventually, (1) counts zero 0s and 1s and accepts.

So if σ ∈ L M2 accepts it.

If σ /∈ L, then either it gets rejected at (0) or it is of the form σ = 0r1s where r > s, or of the form σ = 0r1s

where r < s.
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Suppose it is the former r > s. Then we get a sequence (r(0), s(0)), (r(1), s(1)), . . . where (r(i), s(i)) is the
number of 0s and 1s just before (1) has been entered for the i+ 1’th time. So (r(0), s(0)) = (r, s).

If they sum to an even number then they are of the form (2a + 1, 2b + 1) or (2a, 2b) with a, b integers and
a > b. Then the next terms in the sequence will be (a, b). Since r(i) and s(i) are non-negative integers,
strictly decreasing in i and r(i) > s(i) always, it must be the case that eventually r(i) + s(i) is odd. Then
M2 will reject.

For r < s we reason similarly.

Thus, M2 decides L.

Now we analyse the time complexity:

Theorem 6. The time complexity of M2 is O(n log n).

Proof. Again, (0) contributes a total O(n).

Each execution of (1)-(3) is O(n) because the TM always moves right, and so sees each non-blank square at
most once. (4) is O(1).

Every next iteration cuts the number of 0s and 1s by half.

Thus, there are at most O(log2 n) iterations.

Hence, the total time is O(n log2 n) +O(n) = O(n log n).

Observe we dropped the base-2 in the logarithm on the RHS because changing base incurs only a constant
factor, which is suppressed by O notation.

Corollary 7. L ∈ TIME(n log n).

Comparison between Turing machine models

The definition of time complexity for multitape Turing machines is much like for single-tape ones.

Theorem 8. Let f(n) be a function where f(n) ≥ n. Then every f(n) time multitape decider has an
equivalent O(f2(n)) time single tape decider.

We shall say a non-deterministic Turing machine is a decider if it always halts. (Note, this is different to
Sipser’s definition, but it’s not important).

For a NDTM N deciding a language L, we shall measure the time complexity of N on σ as tN (σ) = n if on
input σ, N generates a sequence of configurations S0,S1, . . . that terminates with Sn.

We can give a equivalent definition based on the computation tree generated by a NDTM: tN (σ) = n if N
accepts σ and the shortest accepting path from the root is length n, or N rejects σ and the longest rejecting
path from the root is n (recall in this case all paths from the root lead to reject).

Note, authors tend to have different definitions of time complexity for a NDTM, but the differences are not
very important.

With tN (σ) = n defined, the complexity is much the same as for single-tape deterministic Turing machines.
That is, for a deciding NDTM N , the (worst-case) time complexity is f(n) = max{tN (σ) : σ ∈ Σ∗, |σ| = n}.
Theorem 9. Let f(n) be a function where f(n) ≥ n. Then every f(n) time non-deterministic single-tape
decider has an equivalent 2O(f(n)) single tape decider.
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