
3P17/4P17 COMPUTABILITY 2014-2015 Lecture Handout 9

Further Reducibility
Theorem 1. The language

ETM = {〈M〉 : M is a Turing machine and L(M) = ∅}

is undecidable.

Proof. Recall
ATM = {〈M,σ〉 : M is a Turing machine which accepts σ}.

We will reduce the problem of deciding the language ATM to the problem of deciding the language ETM
and derive a contradiction.

Suppose that there exists a TM M that decides ETM . Then we can construct a Turing machine M ′ that
decides ATM :

M ′

Check if input string is of form 〈M1, σ〉 where M1 is a Turing machine and σ is input to M1. If not reject.
If so, do the following:

(1) Construct string 〈Mσ〉.

(2) Simulate M with input 〈Mσ〉. If M rejects, then accept. If M accepts, then reject.

Mσ

On input string x do the following:

(1) Compare x to σ. If x 6= σ the reject. If x = σ go to (2)

(2) Simulate M1 on σ. If M1 accepts, then accept. If it rejects, then reject.

Note that Mσ merely performs a string comparison then halts or simulates M1. Thus, the string 〈Mσ〉 can
be computed given the string 〈M1, σ〉.

If 〈M,σ〉 ∈ ATM then L(Mσ) = {σ} 6= ∅, so M will reject 〈Mσ〉 and M ′ will accept 〈M1, σ〉. If 〈M,σ〉 /∈ ATM
then L(Mσ) = ∅, so M will accept 〈Mσ〉 and M ′ will reject 〈M1, σ〉.

Hence, M ′ decides ATM . But we know that no such M ′ exists, so M cannot exist either, and ETM is
undecidable.

Theorem 2. The language

EQTM = {〈M1,M2, 〉} : M1 and M2 are Turing machines and L(M1) = L(M2)}

is undecidable.

Proof. We will reduce the problem of deciding ETM to the problem of deciding EQTM and derive a contra-
diction.

Suppose that there exists a Turing machine M that decides EQTM . Then we can construct a Turing machine
M ′ that decides ETM :

1



3P17/4P17 COMPUTABILITY 2014-2015 Lecture Handout 9

M ′

Check if input string is of form 〈M1〉 where M1 is a Turing machine. If not reject. If so, do the following:

(1) Construct the string 〈M1,M∅〉 where M∅ is a TM that rejects all input.

(2) Simulate M with input〈M1,M∅〉. If it accepts, then accept. If it rejects, then reject.

If 〈M1〉 ∈ ETM then L(M1) = ∅ = L(M∅) and M will accept, so M ′ will accept. If 〈M1〉 /∈ ETM then
L(M1) 6= ∅ = L(M∅) and M will reject, so M ′ will reject.

Hence, M ′ decides ETM . But we know that no such M ′ exists, so M cannot exist either, and EQTM is
undecidable.

The following theorem generalises the above and says that for any non-trivial property P of a language,
testing whether or not a Turing machine has that property is undecidable.

Theorem 3 (Rice’s theorem). Let ALLTM = {〈M〉 : M is a Turing machine} be the language over an
alphabet Σ that contains all Turing machine description (encodings). Suppose PTM is a language over Σ
that satisfies the following conditions:

(i) PTM is a non-empty, strict subset of ALLTM , that is, PTM is non-trivial.

(ii) For any Turing machines M1, M2, if L(M1) = L(M2), then either 〈M1〉 ∈ PTM and 〈M2〉 ∈ PTM , or
〈M1〉 /∈ PTM and 〈M2〉 /∈ PTM . That is, a pair of equivalent Turing machines are either both in or
both not in PTM .

Then PTM is undecidable.

Proof. We will reduce the problem of deciding ATM to the problem of deciding PTM and derive a contra-
diction.

Let M∅ be a Turing machine that always rejects, so L(M∅) = ∅. We may assume 〈M∅〉 /∈ PTM , since if it
were, and PTM being decidable, we could continue the proof for P , which must also be decidable and will
satisfy conditions (i) and (ii).

Since PTM is non-trivial, there is some Turing machine with 〈M1〉 ∈ PTM .

Suppose that there exists a Turing machine M that decides PTM . Then we can construct a Turing machine
M ′ that decides ATM :

M ′

Check if input string is of form 〈M2, σ〉 where M2 is a Turing machine. If not reject. If so, do the following:

(1) Construct the string 〈Mσ〉.

(2) Simulate M with input 〈Mσ〉. If it accepts, then accept. If it rejects, then reject.

Mσ

On input x do the following:

(1) Simulate M2 on σ. If it rejects, then reject. If it accepts, then go to (2)

(2) Simulate M1 on x. If it accepts, then accept. If it rejects, then reject.

2



3P17/4P17 COMPUTABILITY 2014-2015 Lecture Handout 9

Note that because PTM is assumed to be decidable, its members can be enumerated (Examples Sheet 2,
Question 3), so a 〈M1〉 ∈ PTM can be found by Mσ.

Now if 〈M2, σ〉 ∈ ATM , then L(Mσ) = L(M1) since Mσ will always pass its input to M1 and give the same
verdict.

Therefore, by (ii) 〈Mσ〉 ∈ PAT so M will accept it, meaning M ′ will accept 〈M2, σ〉.

On the other hand, if 〈M2, σ〉 /∈ ATM , then either M2 rejects σ or it loops on σ.

If M2 rejects σ then Mσ rejects whatever input it gets.

If M2 loops on σ then Mσ loops on whatever input it gets.

In either case, L(Ms) = ∅ = L(M∅).

By assumption, 〈M∅〉 /∈ PTM , so by (ii) 〈Mσ〉 /∈ PTM .

Thus, M will reject 〈Mσ〉, meaning M ′ will reject 〈M2, σ〉.

Thus, we see that M ′ decides ATM .

This contradicts our previous theorem, so M ′ does not exist and we conclude PTM is undecidable.

Applying Rice’s theorem with PTM = ETM , we have an alternative proof of Theorem 1: Some Turing
machines reject all input, some don’t, so condition (i) is satisfied. If two Turing machines recognise the same
language, then they both either recognise and empty language or both recognise a non-empty one, meaning
they are either both in or both not in PTM = ETM . Hence, condition (ii) is satisfied. We conclude that
ETM is undecidable.

3


