3P17/4P17 COMPUTABILITY 2014-2015 Lecture Handout 9

Further Reducibility

Theorem 1. The language

$$E_{TM} = \{ \langle M \rangle : M \text{ is a Turing machine and } L(M) = \emptyset \}$$

is undecidable.

Proof. Recall

 $A_{TM} = \{ \langle M, \sigma \rangle : M \text{ is a Turing machine which accepts } \sigma \}.$

We will reduce the problem of deciding the language A_{TM} to the problem of deciding the language E_{TM} and derive a contradiction.

Suppose that there exists a TM M that decides E_{TM} . Then we can construct a Turing machine M' that decides A_{TM} :

$\underline{M'}$

Check if input string is of form $\langle M_1, \sigma \rangle$ where M_1 is a Turing machine and σ is input to M_1 . If not reject. If so, do the following:

- (1) Construct string $\langle M_{\sigma} \rangle$.
- (2) Simulate M with input $\langle M_{\sigma} \rangle$. If M rejects, then accept. If M accepts, then reject.

M_{σ}

On input string x do the following:

- (1) Compare x to σ . If $x \neq \sigma$ the reject. If $x = \sigma$ go to (2)
- (2) Simulate M_1 on σ . If M_1 accepts, then accept. If it rejects, then reject.

Note that M_{σ} merely performs a string comparison then halts or simulates M_1 . Thus, the string $\langle M_{\sigma} \rangle$ can be computed given the string $\langle M_1, \sigma \rangle$.

If $\langle M, \sigma \rangle \in A_{TM}$ then $L(M_{\sigma}) = \{\sigma\} \neq \emptyset$, so M will reject $\langle M_{\sigma} \rangle$ and M' will accept $\langle M_1, \sigma \rangle$. If $\langle M, \sigma \rangle \notin A_{TM}$ then $L(M_{\sigma}) = \emptyset$, so M will accept $\langle M_{\sigma} \rangle$ and M' will reject $\langle M_1, \sigma \rangle$.

Hence, M' decides A_{TM} . But we know that no such M' exists, so M cannot exist either, and E_{TM} is undecidable.

Theorem 2. The language

 $EQ_{TM} = \{\langle M_1, M_2, \rangle\}: M_1 \text{ and } M_2 \text{ are Turing machines and } L(M_1) = L(M_2)\}$

is undecidable.

Proof. We will reduce the problem of deciding E_{TM} to the problem of deciding EQ_{TM} and derive a contradiction.

Suppose that there exists a Turing machine M that decides EQ_{TM} . Then we can construct a Turing machine M' that decides E_{TM} :

 $\underline{M'}$

Check if input string is of form $\langle M_1 \rangle$ where M_1 is a Turing machine. If not reject. If so, do the following:

- (1) Construct the string $\langle M_1, M_{\emptyset} \rangle$ where M_{\emptyset} is a TM that rejects all input.
- (2) Simulate M with input $\langle M_1, M_{\emptyset} \rangle$. If it accepts, then accept. If it rejects, then reject.

If $\langle M_1 \rangle \in E_{TM}$ then $L(M_1) = \emptyset = L(M_{\emptyset})$ and M will accept, so M' will accept. If $\langle M_1 \rangle \notin E_{TM}$ then $L(M_1) \neq \emptyset = L(M_{\emptyset})$ and M will reject, so M' will reject.

Hence, M' decides E_{TM} . But we know that no such M' exists, so M cannot exist either, and EQ_{TM} is undecidable.

The following theorem generalises the above and says that for any non-trivial property P of a language, testing whether or not a Turing machine has that property is undecidable.

Theorem 3 (Rice's theorem). Let $ALL_{TM} = \{\langle M \rangle : M \text{ is a Turing machine}\}$ be the language over an alphabet Σ that contains all Turing machine description (encodings). Suppose P_{TM} is a language over Σ that satisfies the following conditions:

- (i) P_{TM} is a non-empty, strict subset of ALL_{TM} , that is, P_{TM} is non-trivial.
- (ii) For any Turing machines M_1 , M_2 , if $L(M_1) = L(M_2)$, then either $\langle M_1 \rangle \in P_{TM}$ and $\langle M_2 \rangle \in P_{TM}$, or $\langle M_1 \rangle \notin P_{TM}$ and $\langle M_2 \rangle \notin P_{TM}$. That is, a pair of equivalent Turing machines are either both in or both not in P_{TM} .

Then P_{TM} is undecidable.

Proof. We will reduce the problem of deciding A_{TM} to the problem of deciding P_{TM} and derive a contradiction.

Let M_{\emptyset} be a Turing machine that always rejects, so $L(M_{\emptyset}) = \emptyset$. We may assume $\langle M_{\emptyset} \rangle \notin P_{TM}$, since if it were, and P_{TM} being decidable, we could continue the proof for \overline{P} , which must also be decidable and will satisfy conditions (i) and (ii).

Since P_{TM} is non-trivial, there is some Turing machine with $\langle M_1 \rangle \in P_{TM}$.

Suppose that there exists a Turing machine M that decides P_{TM} . Then we can construct a Turing machine M' that decides A_{TM} :

$\underline{M'}$

Check if input string is of form $\langle M_2, \sigma \rangle$ where M_2 is a Turing machine. If not reject. If so, do the following:

- (1) Construct the string $\langle M_{\sigma} \rangle$.
- (2) Simulate M with input $\langle M_{\sigma} \rangle$. If it accepts, then accept. If it rejects, then reject.

M_{σ}

 $\overline{\text{On}}$ input x do the following:

- (1) Simulate M_2 on σ . If it rejects, then reject. If it accepts, then go to (2)
- (2) Simulate M_1 on x. If it accepts, then accept. If it rejects, then reject.

Note that because P_{TM} is assumed to be decidable, its members can be enumerated (Examples Sheet 2, Question 3), so a $\langle M_1 \rangle \in P_{TM}$ can be found by M_{σ} .

Now if $\langle M_2, \sigma \rangle \in A_{TM}$, then $L(M_{\sigma}) = L(M_1)$ since M_{σ} will always pass its input to M_1 and give the same verdict.

Therefore, by (ii) $\langle M_{\sigma} \rangle \in P_{AT}$ so M will accept it, meaning M' will accept $\langle M_2, \sigma \rangle$.

On the other hand, if $\langle M_2, \sigma \rangle \notin A_{TM}$, then either M_2 rejects σ or it loops on σ .

If M_2 rejects σ then M_σ rejects whatever input it gets.

If M_2 loops on σ then M_{σ} loops on whatever input it gets.

In either case, $L(M_s) = \emptyset = L(M_{\emptyset})$.

By assumption, $\langle M_{\emptyset} \rangle \notin P_{TM}$, so by (ii) $\langle M_{\sigma} \rangle \notin P_{TM}$.

Thus, M will reject $\langle M_{\sigma} \rangle$, meaning M' will reject $\langle M_2, \sigma \rangle$.

Thus, we see that M' decides A_{TM} .

This contradicts our previous theorem, so M' does not exist and we conclude P_{TM} is undecidable.

Applying Rice's theorem with $P_{TM} = E_{TM}$, we have an alternative proof of Theorem 1: Some Turing machines reject all input, some don't, so condition (i) is satisfied. If two Turing machines recognise the same language, then they both either recognise and empty language or both recognise a non-empty one, meaning they are either both in or both not in $P_{TM} = E_{TM}$. Hence, condition (ii) is satisfied. We conclude that E_{TM} is undecidable.