3P17/4P17 COMPUTABILITY 2014-2015 Lecture Handout 9

Further Reducibility
Theorem 1. The language

Ery = {{M) : M is a Turing machine and L(M) = (}}
is undecidable.
Proof. Recall
Ay = {{(M,0) : M is a Turing machine which accepts o}.

We will reduce the problem of deciding the language A7y to the problem of deciding the language Eras
and derive a contradiction.

Suppose that there exists a TM M that decides E7js. Then we can construct a Turing machine M’ that
decides Ars:

M’
Check if input string is of form (M7, o) where M; is a Turing machine and o is input to M;. If not reject.
If so, do the following:

(1) Construct string (M,).

(2) Simulate M with input (M,). If M rejects, then accept. If M accepts, then reject.
M,
On input string do the following:

(1) Compare x to o. If x # o the reject. If x = o go to (2)

(2) Simulate My on o. If M; accepts, then accept. If it rejects, then reject.

Note that M, merely performs a string comparison then halts or simulates M;. Thus, the string (M,) can
be computed given the string (M, o).

If (M,0) € Apps then L(M,) = {o} # 0, so M will reject (M) and M’ will accept (My,0). If (M,0) ¢ Arn
then L(M,) =0, so M will accept (M,) and M’ will reject (M7, o).

Hence, M’ decides Ary;. But we know that no such M’ exists, so M cannot exist either, and Ep,s is

undecidable. O

Theorem 2. The language
EQrn = {{My1,Ms,)} : My and My are Turing machines and L(M;) = L(Ms)}
s undecidable.

Proof. We will reduce the problem of deciding Erjs to the problem of deciding EQ7)s and derive a contra-
diction.

Suppose that there exists a Turing machine M that decides EQ7jys. Then we can construct a Turing machine
M’ that decides E7j;:

3P17/4P17 COMPUTABILITY 2014-2015 Lecture Handout 9

M’
Check if input string is of form (M;) where M; is a Turing machine. If not reject. If so, do the following:

(1) Construct the string (M7, My) where My is a TM that rejects all input.

(2) Simulate M with input(M;, My). If it accepts, then accept. If it rejects, then reject.

If (My) € Erp then L(M;) =) = L(My) and M will accept, so M’ will accept. If (My) ¢ Erp then
L(M;) # 0 = L(My) and M will reject, so M’ will reject.
Hence, M’ decides Erjs. But we know that no such M’ exists, so M cannot exist either, and EQrps is

undecidable. O

The following theorem generalises the above and says that for any non-trivial property P of a language,
testing whether or not a Turing machine has that property is undecidable.

Theorem 3 (Rice’s theorem). Let ALLyy = {(M) : M is a Turing machine} be the language over an
alphabet ¥ that contains all Turing machine description (encodings). Suppose Pryr is a language over ¥
that satisfies the following conditions:

(i) Pras is a non-empty, strict subset of ALLyys, that is, Pras is non-trivial.

ii or any Turing machines My, Ms, 1 1) = 2), then either 1) € Pryr an 2) € I'Tnm, OT
ii) F T h My, M, if L(M L(Ms), th her (M P d (M. P
(M) ¢ Prar and (M) ¢ Prar. That is, a pair of equivalent Turing machines are either both in or
both not in Prjpy.

Then Prps is undecidable.
Proof. We will reduce the problem of deciding Arps to the problem of deciding Prj; and derive a contra-
diction.

Let My be a Turing machine that always rejects, so L(My) = 0. We may assume (My) ¢ Pra, since if it
were, and Prjs being decidable, we could continue the proof for P, which must also be decidable and will
satisfy conditions (i) and (ii).

Since Prjps is non-trivial, there is some Turing machine with (M) € Pray.

Suppose that there exists a Turing machine M that decides Prj;. Then we can construct a Turing machine
M’ that decides A7y

!
%eck if input string is of form (Ms, o) where My is a Turing machine. If not reject. If so, do the following:
(1) Construct the string (M,).
(2) Simulate M with input (M,). If it accepts, then accept. If it rejects, then reject.
M,
On input x do the following:
(1) Simulate M3 on o. If it rejects, then reject. If it accepts, then go to (2)

(2) Simulate M; on x. If it accepts, then accept. If it rejects, then reject.

3P17/4P17 COMPUTABILITY 2014-2015 Lecture Handout 9

Note that because Prj; is assumed to be decidable, its members can be enumerated (Examples Sheet 2,
Question 3), so a (M;) € Prys can be found by M,.

Now if (Ms,0) € Ay, then L(M,) = L(M;) since M, will always pass its input to M; and give the same
verdict.

Therefore, by (ii) (M,) € Par so M will accept it, meaning M’ will accept (Ms, o).

On the other hand, if (Ms,0) ¢ Aras, then either My rejects o or it loops on o.

If M5 rejects o then M, rejects whatever input it gets.

If M5 loops on o then M, loops on whatever input it gets.

In either case, L(M;) = 0 = L(My).

By assumption, (My) ¢ Pra, so by (ii) (My) ¢ Pra.

Thus, M will reject (M,), meaning M’ will reject (Mo, o).

Thus, we see that M’ decides Aras.

This contradicts our previous theorem, so M’ does not exist and we conclude Prj; is undecidable. O
Applying Rice’s theorem with Prjp; = Erps, we have an alternative proof of Theorem Some Turing
machines reject all input, some don’t, so condition (i) is satisfied. If two Turing machines recognise the same
language, then they both either recognise and empty language or both recognise a non-empty one, meaning

they are either both in or both not in Pry; = Erp. Hence, condition (ii) is satisfied. We conclude that
Ers is undecidable.

